Реферат: Коды Фибоначи Коды Грея

Такое представление чисел N называется p -кодом Фибоначчи. Каждому p Î{ 0, 1, 2, …, ¥} соответствует свой код, т. е. их число бесконечно.

При p = 0 p -код Фибоначчи совпадает с двоичным кодом.

Для 1-кода Фибоначчи кодовые комбинации имеют вид:

Таблица 2


N

KK Вес порядка
5 4 3 2 1
0 A0 0 0 0 0 0
1 A1 0 0 0 0 1
1 A2 0 0 0 1 0
2 A3 0 0 0 1 1
2 A4 0 0 1 0 0
3 A5 0 0 1 0 1
3 A6 0 0 1 1 0
4 A7 0 0 1 1 1
3 A8 0 1 0 0 0
4 A9 1 0 0 0 1
4 A10 0 1 0 1 0
5 A11 0 1 0 1 1
5 A12 0 1 1 0 0
6 A13 0 1 1 0 1
6 А14 0 1 1 1 0
7 А15 0 1 1 1 1
N KK

Вес порядка

5 4 3 2 1
5 A16 1 0 0 0 0
6 A17 1 0 0 0 1
6 А18 1 0 0 1 0
7 A19 1 0 0 1 1
7 A20 1 0 1 0 0
8 A21 1 0 1 0 1
8 A22 1 0 1 1 0
9 A23 1 0 1 1 1
8 A24 1 1 0 0 0
9 A25 1 1 0 0 1
9 A26 1 1 0 1 0
10 A27 1 1 0 1 1
10 A28 1 1 1 0 0
11 A29 1 1 1 0 1
11 A30 1 1 1 1 0
12 А31 1 1 1 1 1

Как видно из таблицы 5 разрядным 1-кодом Фибоначчи можно закодировать 13 натуральных чисел от 0 до 12, при этом каждому числу соответствует множество комбинаций.

Коды Фибоначчи образуют соответствующую систему счисления с набором арифметических операций.

Сложение: Вычитание:

0+0 = 0; 0- 0 = 0;

0+1 = 1; 1 -1 = 0;

1+0 = 1; 1 -0 = 1;

1+1 = 111; 10-1 = 1;

1+1 = 1001; 110 -1 = 11;

1000-1 = 111.

При сложении 2-х единиц может быть:

1. j 1 (n)+ j 1 (n)= j 1 (n)+ j 1 (n-1)+ j 1 (n-2) т. е. равно 1 и перенос 1 в два младших разряда.

2. j 1 (n)+ j 1 (n)= j 1 (n+1)+ j 1 (n-2) т. е. равно 0 и перенос 1 в два разряда - предыдущий и последующий.

Коды Фибоначчи обладают рядом полезных свойств (например, избыточность и т. д.), позволяющих строить быстродействующие и помехоустойчивые АЦП (“фибоначчевые” АЦП), реализующих специальные алгоритмы преобразования. Коды Фибоначчи используются для диагностики ЭВМ, в цифровых фильтрах для улучшения спектрального состава сигнала за счет перекодировки и др. областях.


2. ДВОИЧНЫЙ ОТРАЖЕННЫЙ КОД. КОД ГРЕЯ

Код Грея отличается от двоичного кода тем, что при переходе к следующей кодовой комбинации изменяется только один элемент кодовой комбинации (табл. 3).

Если при передаче сообщений с помощью кода Грея одновременно изменяется несколько разрядов кода, то это свидетельствует об ошибке, в этом состоит обнаруживающая способность кода Грея.

Код Грея, не взвешенный и непригоден для вычислительных операций без предварительного перевода в двоичный код.

Если обозначить: ai - двоичный код;

bi - Код Грея, то правило перехода из двоичного кода к коду Грея имеет вид:

bi =ai ai+1

где - суммирование по mod 2 ai+1 - ai - со сдвигом на один разряд вправо.

Пример:

1) ai = 1 1 1 0 1

К-во Просмотров: 289
Бесплатно скачать Реферат: Коды Фибоначи Коды Грея