Реферат: Компактные операторы

Содержание

Введение........................................................................................................... 3

§1. Основные понятия и определения............................................................. 4

1.1. Линейные пространства........................................................................... 4

1.2. Нормированные пространства................................................................ 5

1.3. Банаховы пространства............................................................................ 6

1.4. Компактные множества............................................................................ 8

1.5. Линейные операторы и линейные функционалы.................................. 11

1.6. Сопряженные операторы....................................................................... 12

§2. Компактные операторы........................................................................... 13

2.1. Определение компактного оператора................................................... 13

2.2. Свойства компактных операторов......................................................... 13

2.3. Примеры некомпактного и компактных операторов........................... 16

Литература..................................................................................................... 20

Введение

Изучение произвольных линейных операторов представляет собой весьма трудоемкую задачу, однако среди линейных операторов можно выделить классы операторов, которые могут быть рассмотрены более подробно. Данная работа рассматривает основные понятия, свойства, определения и теоремы, связанные с одним из классов линейных операторов – компактными операторами.

Работа состоит из двух параграфов. Первый из них содержит предварительные сведения, необходимые для рассмотрения темы: понятия пространств, которые необходимы при изучении компактных операторов, понятия линейного оператора и линейного функционала, сопряженного оператора, компактного множества. Во втором параграфе рассмотрено определение компактного оператора, основные свойства этого класса операторов и примеры компактных и некомпактного оператора.

§1. Основные понятия и определения.

1.1 Линейные пространства.

Определение: Непустое множество элементов называется линейным, если оно удовлетворяет таким условиям:

I. Для любых двух элементов определен единственный элемент , называемый суммой и обозначаемый , причем

1) ;

2) ;

3) в существует такой элемент 0, что для всех ;

4) для каждого существует такой элемент , что .

II. Для любого числа и любого элемента определен элемент , причем

1) ;

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 406
Бесплатно скачать Реферат: Компактные операторы