Реферат: Компьютерное математическое моделирование в экономике

1) была бы точно удовлетворена потребность в стали предприятий Q1 , Q2 ,..., Qk ;

2) была бы вывезена вся сталь с заводов PI , Р2 , ..., Рт ;

3) общая стоимость перевозок была бы наименьшей.

Обозначим через Хij количество стали (в тоннах), предназначенной к отправке с завода Рi на предприятие QJ . План перевозок состоит из (m×k) неотрицательных чисел xij (i = 1, 2, ..., m; j = 1, 2, ..., k).

Таблица 7.10

Схема перевозок стали

В В В ¼ В Отправлено
Из
Из
Из xm3
Привезено

Первое условие примет вид


(7.74)

Второе условие примет вид


(7.75)

Раз стоимость перевозки одной тонны из Рi , в QJ равна сi j, то общая стоимость S всех перевозок равна

(7.76)

Таким образом, мы приходим к следующей чисто математической задаче: дана система m+k линейных алгебраических уравнений (7.74) и (7.75) с m·k неизвестны­ми (обычно m·k » m+k) и линейная функция S. Требуется среди всех неотрица­тельных решений данной системы найти такое, при котором функция S достигает наименьшего значения (минимизируется).

Практическое значение этой задачи огромно, ее умелое решение в масштабах нашей страны могло бы экономить ежегодно огромные средства.

Пример 3. Задача о диете. Пусть у врача-диетолога имеется n различных продук­тов F1 , F2 , ..., Fn , из которых надо составить диету с учетом их питательности. Пусть для нормального питания человеку необходимо m

веществ N1 , N2 , …, Nm . Предположим, что за месяц каждому человеку необходимо g1 кг вещества N1 , g2 кг вещества N2 , ..., gm кг вещества Nm . Для составления диеты необходимо знать содержание питательных веществ в каждом продукте. Обозначим через aij количе­ство i-го питательного вещества, содержащегося в одном килограмме j-го продукта. Всю эту информацию представляют в виде, так называемой, матрицы питательно­сти (табл. 7.11).

Таблица 7.11

Матрица питательности

Питательное вещество Продукт

Предположим, что диетолог уже выбрал диету, т.е. определил, что человек дол­жен за месяц потреблять h1 кг продукта F1 ,...,hn кг продукта Fn . Полное количество питательного вещества N1 будет

По условию требуется, чтобы его, по крайней мере, хватило

(7.77)

Точно то же и для остальных веществ. В целом

(I = 1, 2, …, m).
(7.78)

Эти условия определяют наличие минимума необходимых питательных веществ. Диета, для которой выполнены условия (7.78) - допустимая диета. Предположим, что из всех допустимых диет должна быть выбрана самая дешевая. Пусть pi - цена 1 кг продукта Fi . Полная стоимость диеты, очевидно,

(7.79)

Таким образом, мы пришли к задаче: найти неотрицательное решение h1 , ..., hn системы неравенств (7.78), минимизирующее выражение (7.79).

В примерах, приведенных выше, имеется нечто общее. Каждый из них требует нахождения наиболее выгодного варианта в определенной экономической ситуа­ции. С чисто математической стороны в каждой задаче требуется найти значение нескольких неизвестных так, чтобы

1) все эти значения были неотрицательны;

2) удовлетворяли системе линейных уравнений или линейных неравенств;

3) при этих значениях некоторая линейная функция имела бы минимум (или мак­симум). Таким образом, линейное программирование - это математическая дисцип­лина, изучающая методы нахождения экстремального значения линейной функции нескольких переменных при условии, что последние удовлетворяют конечному числу линейных уравнений и неравенств. Запишем это с помощью формул: дана система линейных уравнений и неравенств.

Запишем это с помощью формул: дана система линейных уравнений и неравенств


(7.80)

и линейная функция

К-во Просмотров: 350
Бесплатно скачать Реферат: Компьютерное математическое моделирование в экономике