Реферат: Компьютерное математическое моделирование в экономике

Требуется найти такое неотрицательное решение

(7.82)

системы (7.80), чтобы функция/принимала наименьшее (или наибольшее) значение.

Условия (7.80) называют ограничениями данной задачи, а функцию f - целевой функцией (или линейной формой). В приведенных выше примерах ограничения имели вид не уравнений, а неравенств. Заметим, что ограничения в виде неравенств, всегда можно свести к системе в виде равенств (способом введения добавочных неизвестных).

Так, для неравенства

(7.83)

вводя добавочное неизвестное хn+1 , получаем

(7.84)

Потребовав его неотрицательности наряду с остальными неизвестными, получим, что условие хn+1 ³ 0 превращает (7.84) в (7.83). Введя по отдельному дополнитель­ному неизвестному для каждого из неравенств, получим систему уравнений, равно­сильную исходной системе неравенств.

Пример . Дана система неравенств


Сведем ее к системе уравнений. Получим


После оптимизации значениями дополнительных неизвестных следует пренебречь.

СИМПЛЕКС-МЕТОД

Для решения ряда задач линейного программирования существуют специальные методы. Есть, однако, общий метод решения всех таких задач. Он носит название симплекс-метода и состоит из алгоритма отыскания какого-нибудь произвольного допустимого решения и алгоритма последовательного перехода от этого решения к новому допустимому решению, для которого функция f изменяется в нужном направлении (для получения оптимального решения).

Пусть система ограничений состоит лишь из уравнений


(7.85)

и требуется отыскать минимум линейной функции (7.81). Для отыскания произ­вольного опорного решения приведем (7.85) к виду, в котором некоторые r неиз­вестных выражены через остальные, а свободные члены неотрицательны (как это сделать - обсудим позднее):

(7.86)

Неизвестные х1 , х2 , ..., хr - базисные неизвестные, набор {х1 , х2 , ..., хr } называется базисом, а остальные неизвестные {xr +1 , хr+2 , …, хn } - свободные. Подставляя (7.86) в (7.81), выразим функцию f через свободные неизвестные:

(7.87)

Положим все свободные неизвестные равными нулю:

(7.88)

Найдем из системы (7.86) значения базисных неизвестных

(7.89)

Полученное таким образом допустимое решение

отвечает базису x1 , x2 , ..., хr , т.е. является базисным решением. Допустим для определенности, что мы ищем минимум f . Теперь нужно отданного базиса перейти к другому с таким расчетом, чтобы значение линейной функции f при этом умень­шилось. Проследим идею симплекс-метода на примере.

Пример 1 . Дана система ограничений


Требуется минимизировать линейную функцию f = х2 – х3 . В качестве свободных переменных выберем х2 и x3 . Тогда данная система ограничений преобразуется к виду


Таким образом, базисное решение (3, О, О, 1). Так как линейная функция уже запи­сана в свободных неизвестных, то ее значение для данного базисного решения f = 0. Для уменьшения этого значения можно уменьшить х2 или увеличить х3 . Но х2 в данном базисе равно нулю и потому его уменьшать нельзя. Попробуем увеличить x3 . Первое из уравнений имеет ограничение х3 = 1 (из условия х1 ³ 0), второе - не дает ограничений. Далее, берем х3 = 1, х2 не меняем и получаем новое допустимое решение (О, О, 1, 3), для которого f = -1 - уменьшилось. Найдем базис, которому соответствует это решение (он состоит, очевидно, из переменных x3 , х4 ). От преды­дущей системы ограничений переходим к новой:


а форма в новых свободных переменных имеет вид

Теперь попробуем повторить предыдущую процедуру. Для уменьшения f надо уменьшить либо x1, либо х2 , но это невозможно, так как в этом базисе

К-во Просмотров: 348
Бесплатно скачать Реферат: Компьютерное математическое моделирование в экономике