Реферат: Контрольная по теории вероятности

Условные вероятности события D если имела место одна из гипотез будут:

По формуле Бейеса вычислим условную вероятность с учетом появления события Р :

Задача № 3

№№ 41-60. Найти вероятность того, что в п независимых испытаниях событие появится: а) ровно k раз; б) не менее k раз; в) не более k раз; г) хотя бы один раз, если в каждом испытании вероятность появления этого события равна р (см. исходные данные в таблице).

n=5 k=4 p=0,8

Решение:

Так как число испытаний невелико, то для вычисления искомой вероятности воспользуемся формулой Бернулли:

, где

число сочетаний из п элементов по k , q=1- p . В рассматриваемом случае:

а) вероятность появления события ровно 4 раза в 5 испытаниях:

б) вероятность появления события не менее 4 раз в 5 испытаниях:

в) вероятность появления события не более 4 раз в 5 испытаниях:

г) вероятность появления события хотя бы один раз в 5 испытаниях:

Задача № 4

№№ 61-80. Дана плотность распределения f( x) случайной величины Х. Найти параметр а, функцию распределения случайной величины, математическое ожидание М[Х], дисперсию D[ X], вероятность выполнения неравенства х1 < x< x2 , построить график функции распределения F( x).

Решение:

Для определения параметра а воспользуемся основным свойством плотности распределения:

, так как при плотность распределения равна нулю, то интеграл примет вид: или , откуда

;

К-во Просмотров: 227
Бесплатно скачать Реферат: Контрольная по теории вероятности