Реферат: Культура математического языка школьников и их познавательная активность
Всякая арифметическая задача состоит в том, что по нескольким известным величинам и по данным соотношения между этими известными величинами и другими, неизвестными, отыскиваются неизвестныя. Алгебра дает особый способ для решения арифметических задач. Этот способ основан на том, что словесно выраженныя условия арифметических задач могут быть переводимы на алгебраический язык, т. е. выражаемы посредством алгебраических формул.
Перевод словесно выраженных условий задачи на алгебраический язык вообще называется составлением формул.
Составить по условиям задачи уравнение с одним_неизвестным значит так перевести эти условия на алгебраический язык, чтобы вся совокупность этих условий выразилась одним уравнением, содержащим одно неизвестное. Для этого необходимо, чтобы число отдельных независимых между собой условий задачи было бы равно числу подразумеваемых в ней неизвестных.
Вследствие чрезвычайнаго разнообразия задач приемы составления уравнений, соответствующих этим задачам чрезвычайно разнообразны. Общих правил для составления уравнений нет.
Но есть одно общее указание, которое руководит нашим разсуждением при переводе условий задачи на алгебраический язык и позволяет нам с самого начала разсуждения идти верным путем к достижению окончательной цели. Это общее указание или общий принцип составленя уравнения мы выразим следующим образом:
Чтобы составить по условиям задачи уравнение с одним неизвестным нужно:
1) выбрать между неизвестными, которыя в задачи или прямо указываются, или подразумеваются, какое нибудь одно, принимаемое за первое, и обозначить это неизвестное какой нибудь буквой, напр., х;
2) посредством этого обозначения и обозначенний, данных в задаче, выразить все величины, о которых в задаче прямо говорится, или которыя подразумеваются,наблюдая, чтобы при составлена таких выражений постепенно принимались во внимание все данныя в задаче числа и все относящияся к данным или к неизвестным величинам условия;
3) после такого применения всех условий разыскать между составленными или просто записанными выражениями два таких,которыя в силу одного из данных условий должны быть равны между собою, и соединить эти выражения знаком равенства.
Применим этот принцип к решению задачи:
Задача. Число монет в одном кощельке вдвое меньше,чем в другом. Если выложит из перваго шесть монет, а во второй прибавить восемь монет, то число монет в первом окажется в семь раз менее, чем во втором. Узнать, сколько монет в каждом кошельке?
В этой задаче указаны несколько известных и несколько неизвестных величин. Примем за первое неизвестное число монет перваго кошелька и обозначим его через х. Затем займемся обозначением всех величин, к которым относятся условия задачи.
Число монет перваго кошелька есть х. Отношение чисел монет во втором и первом кошельках 2. Значить число монет второго кошелька 2х. Из перваго вынимают 6 монет. Поэтому в первом кошельке остается монет x— 6. Во второй прибавляют 8 монет.
Следовательно, во втором кошельке получится монет 2х+8. Новое отношение между числами монет второго и перваго кошелька есть (2х+8):(х-6). Оно также равно 7. На этом основании составляем уравнение(2х+8):(х-6)=7, решая которое, получим х=10, после чего нетрудно определить другия неизвестныя, о которых мы здесь упоминали.
Если бы мы приняли за первое неизвестное число монет второго кошелька и обозначили бы его для отличия от предыдущего обозначения черезъ у, то, как легко убедиться, получилось бы другое уравнение, именно (y+8):(y/2-6)=7, которое также разрешает задачу и дает ответ y=20.
Можно было бы принять за первое неизвестное число монет, оказавшееся в первом кошельке после выкладки из него 6 монет, тогда, обозначив это неизвестное через z идя тем же путем, каким мы шли при составлении перваго уравнения,мы получили бы уравнение (2(z+6)+8):z=7, откуда z=4.
Понятно, что многое изменилось в вопросах методики преподавания , но дети повторяют тот же путь, что и их сверстники 100-200 лет тому назад, и психология восприятия предмета мало изменилась, как и психология учителя, вводящего ученика в область определенных знаний. И тут уместно помнить о традициях отечественной педагогики.