Реферат: Квадратные корни

5. Извлечение квадратного корня из произведения, дроби и степени

Выражения и имеют одно и то же значение 6.

В самом деле, = 3, = 2, = 6, поэтому = 3 2 = 6 и = == 6. Равенство = – часный случай общего утверждения.

Теорема 1 . Квадратный корень из произведения двух неотрицательных чисел равен произведению квадратных корней из этих чисел, т.е. при а 0, b 0 имеем =

Доказательство .

Пусть числа а и b неотрицательны.

Тогда по правилу возведения в степень имеем

2 = = а b

Кроме того, – неотрицательное число как произведение двух неотрицательных чисел и . Поэтому =

Пример 1. Найдем значения выражения

Решение.

Мы имеем = 25, = 16, = 0,01,

и потому = 25160,01= 4.

Аналогично доказывается, что =

Теорема 2 . Квадратный корень из дроби с неотрицательным числителем и положительным знаменателем равен частному от деления квадратного корня из числителя на квадратный корень из знаменателя, т.е. при а 0 и b > 0 имеем

Теорема 3. При любом значении а и при любом b 0 верно равенство

6. Преобразование выражений

При преобразовании выражении, содержащих квадратные корни, оказывается полезной следующая формула:

= ,


где А2 В (в обеих частях равенства одновременно берутся знаки «плюс» и «минус «). Чтобы доказать это равенство, заметим, во-первых, что и левая, и правая его части являются при А 0, В 0, А2 – В 0 неотрицательными числами. Возведем теперь обе части равенства в квадрат. В левой части имеем А , в правой части по формуле квадрата суммы или разности получаем

2 + =

= А 2 = А 2 =

= А 2 = А 2 = А .

Таким образом, квадраты обеих частей равенства оказались одинаковыми, а поскольку эти части – неотрицательные числа, то равенство доказано.

Пример 1. Упростить выражение .

1-й способ . В одном случае имеем А = 5, В = 21, А2 – В =

= 52 – 21 = 4, и поэтому по формуле

= = .

К-во Просмотров: 693
Бесплатно скачать Реферат: Квадратные корни