Реферат: Лекции по линейной алгебре (МГИЕМ, ФПМ)
Действия над кватернионами, записанными в виде z + wj производятся по обычным правилам алгебры с учетом того, что и jz =
Таким образом, (z + wj)(z + wj) = (zz - w) + (zw + w)j.
6. Если , число z будет вещественным. Число, для которого называется чисто мнимым; оно имеет вид bi .z = Re(z) + Im(z).
6. Если , число q будет вещественным. Число, для которого называется чисто мнимым; оно имеет вид bi + cj + d ij .Произведение ij обозначается k . q = Re(q) + Im(q).
-
Связь с векторной алгеброй в .
В этом параграфе нам придется рассматривать одновременно несколько разных произведений. Крестом (ґ) будем обозначать векторное произведение в ,точкой (Ч) - скалярное произведение, а звездочка (*) будет использована для умножения кватернионов. Пусть q =bi + cj +dk - чисто мнимый кватернион. Пользуясь формулами предыдущего параграфа, нетрудно подсчитать, что , ij = -ji = k, jk = -kj = i, ki = - ik = j. Если кватернионам i , j ,k поставить в соответствие правый ортонормированный базис (i, j, k) пространства, то чисто мнимый кватернион q = bi + cj + dk можно интерпретировать как вектор в пространстве и мы видим, что умножение двух чисто мнимых кватернионов сводится к операциям векторного и скалярного умножения в : q*r = -qЧr + qґr . Отсюда следует, что q*r +r*q =-2qЧr - вещественное число, а q*r - r*q =2 qґr - чисто мнимое число.
Следствие
Пусть p и q - мнимые части кватернионов P и Q соответственно. Кватернионы P и Q коммутируют (то есть P*Q = Q*P ) тогда и только тогда, когда векторы p и q коллинеарны.
В самом деле, поскольку вещественные числа коммутируют с любым кватернионом, P*Q = Q*P p*q = q*p то есть -pЧq + pґq = -qЧp + qґp pґq = qґp pґq =0.
Используя кватернионы можно вывести некоторые свойства векторного произведения.
Теорема 5.
-
Для любых трех векторов p , q , r имеет место равенство (pґq) ґr + (qґr) ґp + (rґp) ґq =0 (Тождество Якоби)
-
(pґq) ґr = (rЧp)q - (qЧr)p
Доказательство.
Поскольку qґr = q*r + qЧr, имеем: (pґq) ґr=(pґq)*r +(pґq)Чr = (p*q) *r + (pЧq)r + (pґq)Чr ; последнее слагаемое - смешанное произведение (pqr). Производя круговую перестановку, получим: (qґr)ґp = (q*r)*p + (qЧr)p + (pqr).Сложим эти формулы и учтем ассоциативность умножения кватернионов: (pґq) ґr + (qґr)ґp = (p*(q*r)) + (q*r)*p) + (pЧq)r + (qЧr)p + 2(pqr). (1) Заменяя обратно q*r = - qЧr + qґr, преобразуем первую скобку A = -2 (qЧr)p + [p*(qґr) + (qґr)*p]. В квадратной скобке стоит произведение чисто мнимых кватернионов и потому она будет вещественным числом. Учитывая, что левая часть формулы (1) - чисто мнимое число, получаем окончательно: (pґq) ґr + (qґr)ґp = (pЧq)r - (qЧr)p. Производя круговые перестановки, получаем 2 аналогичных равенства:
(qґr) ґp + (rґp)ґq = (qЧr)p - (rЧp)q (2)
(rґp) ґq + (pґq)ґr = (rЧp)q - (pЧq)r. Складывая все 3 равенства, получаем тождество Якоби: (pґq) ґr + (qґr) ґp + (rґp) ґq =0 Вычитая из этого тождества равенство (2) , получим: (pґq) ґr = (rЧp)q - (qЧr)p.
-
Связь с перемещениями в .
Пусть p - чисто мнимый кватернион, а s№0 - любой кватернион. Пусть q = . Тогда . Учитывая, что и , получаем , то есть этот кватернион чисто мнимый. Таким образом возникает отображение : .Заметим, что Поскольку , - линейный оператор, сохраняющий скалярное произведение.
Теорема 6.
Det() = 1.
Доказательство.
Пусть e = (i,j,k). Тогда = () и Det() равен определителю этой матрицы то есть смешанному произведению ее столбцов . Имеем:
= +. Второе слагаемое равно 0 так как =0, а первое преобразуется следующим образом: = . Поэтому, ()==1.
Как нам известно, ортогональная матрица с определителем 1 задает поворот в . Вектор v параллельный оси вращения удовлетворяет условию ( v )=v Интерпретируя v как чисто мнимый кватернион, заметим, что условие означает, что v и s коммутируют. Значит, если Im(s) №0, v = lIm(s).Подсчитаем теперь угол поворота j. Пусть s = a + v, где v№0. Пусть вектор p ортогонален оси вращения v. Тогда v*p =vґp .Имеем: = (a - v) p(a + v) = + 2apґv - (vґp)ґv. Используя формулы предыдущего параграфа, получаем: (vґp)ґv = . Итак, = () Второе слагаемое в скобке можно записать как . Значит, cosj = , sinj =.Если определить угол y = arccos(), то j = 2y +2pn. Таким образом, поворот на уголвокруг оси, заданной единичным вектором n задается формулой , где s = cos(j/2) + n sin(j/2). Композиция двух поворотов , заданных кватернионами s и t = cos(a/2) + m sin(a/2) задается формулой и, следовательно, равна . Находим: s*t = cos(j/2) cos(a/2)-(nЧm) sin(j/2) sin(a/2) + n sin(j/2) cos(a/2) + m cos(j/2) sin(a/2) + (nґm) sin(j/2) sin(a/2). Вещественная часть этого кватерниона равна косинусу половины угла поворота, а мнимая часть определяет направление оси вращения.
Преобразование является зеркальным поворотом. Особо отметим случай вещественного s . В этом случае оно имеет вид: (зеркальный поворот на 180 градусов) и является центральной симметрией. Обозначим его буквой Z и отметим, что оно перестановочно с любым оператором.
Переходя к перемещениям мы видим, что формула , где как и выше s = cos(j/2) + n sin(j/2) задает поворот на угол j вокруг оси, заданной единичным вектором n и точкой , а та же формула со знаком (-) задает зеркальный поворот.
-
Перемещение как произведение отражений.
Теорема 7