Реферат: Линейное программирование: решение задач графическим способом
aМ 1 x1 + aМ 2 x2 + ... + aМ N ХN = bМ
Так как Z - линейная функция, то Z = Сj , (j = 1, 2, ..., n), то все коэффициенты линейной функции не могут быть равны нулю, следовательно, внутри области, образованной системой ограничений, экстремальные точки не существуют. Они могут быть на границе области, но исследовать точки границы невозможно, поскольку частные производные являются константами.
Для решения задач линейного программирования потребовалось создание специальных методов. Особенно широкое распространение линейное программирование получило в экономике, так как исследование зависимостей между величинами, встречающимися во многих экономических задачах, приводит к линейной функции с линейными ограничениями, наложенными на неизвестные.
Гл 1Математические основы решения задачи линейного программирования графическим способом
1.1 Математический аппарат
Для понимания всего дальнейшего полезно знать и представлять себе геометрическую интерпретацию задач линейного программирования, которую можно дать для случаев n =2 и n =3.
Наиболее наглядна эта интерпретация для случая n =2, т.е. для случая двух переменных и . Пусть нам задана задача линейного программирования в стандартной форме
(1.19) |
Возьмём на плоскости декартову систему координат и каждой паре чисел поставим в соответствие точку на этой плоскости.
Обратим прежде всего внимание на ограничения и . Они из всей плоскости вырезают лишь её первую четверть (см. рис. 1). Рассмотрим теперь, какие области соответствуют неравенствам вида . Сначала рассмотрим область, соответствующую равенству . Как Вы, конечно, знаете, это прямая линия. Строить её проще всего по двум точкам.
Пусть . Если взять , то получится . Если взять , то получится . Таким образом, на прямой лежат две точки и . Дальше через эти две точки можно по линейке провести прямую линию (смотри рисунок 2).
Если же b=0, то на прямой лежит точка (0,0). Чтобы найти другую точку, можно взять любое отличное от нуля значение и вычислить соответствующее ему значение .
Эта построенная прямая разбивает всю плоскость на две полуплоскости. В одной её части , а в другой наоборот . Узнать, в какой полуплоскости какой знак имеет место проще всего посмотрев, какому неравенству удовлетворяет какая-то точка плоскости, например, начало координат, т.е. точка (0,0).
1.2 Геометрическая интерпретация задачи линейного программирования.
Рассмотрим задачу ЛП в стандартной форме записи:
max f ( X ) = с1 х1 + с2 х2 + ... + сп хп (*)
при ограничениях
|
а21 х1 + а22 х2 + … + а2 n х n ≤ b 2
……………………………..
|
х j ≥ 0, j = 1, 2, …, n .
Рассмотрим эту задачу на плоскости, т.е. при п = 2. Пусть система неравенств (**), (***) совместна (имеет хотя бы одно решение):
а11 х1 + а12 х2 ≤ b 1
а21 х1 + а22 х2 ≤ b 2
…………..
а m 1 х1 + а m 2 х2 ≤ bm
x 1 ≥ 0; х2 ≥ 0.
Каждое неравенство этой системы геометрически определяет полуплоскость с граничной прямой а i 1 х1 + а i 2 х2 ≤ bi i = 1, m . Условия неотрицательности определяют полуплоскости соответственно с граничными прямыми x 1 = 0; х2 = 0. . Система совместна, поэтому полуплоскости, как выпуклые множества, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, координаты каждой из которых составляют решение данной системы. Совокупность этих точек называют многоугольником решений. Это может быть точка, отрезок, луч, замкнутый многоугольник, неограниченная многоугольная область.
Если в системе ограничений (**) - (***) n = 3, то каждое неравенство геометрически представляет полупространство трехмерного пространства, граничная плоскость которого а i 1 х1 + а i 2 х2 + а i 3 х1 ≤ bi , а условия неотрицательности — полупространства с граничными плоскостями соответственно xi = 0 ( i = 1, 2, 3) . Если система ограничений совместна, то эти полупространства, как выпуклые множества, пересекаясь, образуют в трехмерном пространстве общую часть, которая называется многогранником решений.
Пусть в системе (**) - (***) п > 3, тогда каждое неравенство определяет полупространство n-мерного пространства с граничной гиперплоскостью а i 1 х1 + а i 2 х2 + … + а in х n ≤ bi i = 1, т , а условия неотрицательности — полупространства с граничными гиперплоскостями xj = 0, j = 1, n .
Если система ограничений совместна, то по аналогии с трехмерным пространством она образует общую часть n-мерного пространства, называемую многогранником решений, так как координаты каждой его точки являются решением.
Таким образом, геометрически задача линейного программирования представляет собой отыскание такой точки многогранника решений, координаты которой доставляют линейной функции минимальное значение, причем допустимыми решениями служат все точки многогранника решений.
1.3 Этапы решения графического метода задач линейного программирования
Графический метод основан на геометрической интерпретации задачи линейного программирования и применяется в основном при решении задач двумерного пространства и только некоторых задач трехмерного пространства, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трех изобразить графически вообще невозможно.
Пусть задача линейного программирования задана в двумерном пространстве, т. е. ограничения содержат две переменные.
Если в ЗЛП ограничения заданы в виде неравенств с двумя переменными, она может быть решена графически. Графический метод решения ЗЛП состоит из следующих этапов.
Этап 1.
Сначала на координатной плоскости x 1 Ox 2 строится допустимая многоугольная область (область допустимых решений, область определения), соответствующая ограничениям:
(1.31) |
Не приводя строгих доказательств, укажем те случаи, которые тут могут получится.
1. Основной случай - получающаяся область имеет вид ограниченного выпуклого многоугольника (рис. 3а)).
2. Неосновной случай - получается неограниченный выпуклый многоугольник, имеющий вид, подобный изображенному на рис. 3.б. Подобная ситуация, например, получится, если в рассмотренном выше примере убрать ограничение . Оставшаяся часть будет неограниченным выпуклым многоугольником.
|