Реферат: Линейное программирование: решение задач графическим способом

б)

а)

Наконец, возможен случай, когда неравенства (1.31) противоречат друг другу , и допустимая область вообще пуста .

Рассмотрим теорию на конкретном примере:

Найти допустимую область задачи линейного программирования, определяемую ограничениями

(1.32)

Решение:

1. Рассмотрим прямую . При , а при . Таким образом, эта прямая проходит через точки (0,1) и (-1,0). Беря получим, что -0+0<1 и поэтому интересующая нас полуплоскость лежит ниже прямой, изображенной на рис. 4.а.

2. Рассмотрим прямую . При , а при . Таким образом, эта прямая проходит через точки (0, -1/2) и (1,0). так как (4.б).

3. Наконец, рассмотрим прямую . Она проходит через точки (0,3) и (3,0) и так как 0+0<3, то интересующая нас полуплоскость лежит ниже прямой, изображенной на рис. 4.в.

Сводя все вместе и добавляя условия получим рисунок 5, где выделена область, в которой выполняются одновременно все ограничения (1.32). Обратите внимание на то, что получившаяся область имеет вид выпуклого многоугольника .

Этап 2.

Вернёмся теперь к исходной задаче линейного программирования. В ней, кроме системы неравенств, есть еще целевая функция .

Рис. 6

Рассмотрим прямую. Будем увеличивать L. Что будет происходить с нашей прямой?

Легко догадаться, что прямая будет двигаться параллельно самой себе в том направлении, которое дается вектором , так как это - вектор нормали к нашей прямой и одновременно вектор градиента функции .

А теперь сведем всё вместе. Итак, надо решить задачу

Oграничения задачи вырезают на плоскости некоторый многоугольник. Пусть при некотором L прямая пересекает допустимую область. Это пересечение дает какие-то значения переменных , которые являются планами.

Этап 3

Увеличивая L мы начнем двигать нашу прямую и её пересечение с допустимой областью будет изменяться (см. рис. 7). В конце концов эта прямая выйдет награницу допустимой области - как правило, это будет одна из вершин многоугольника . Дальнейшее увеличение L приведёт к тому, что пересечение

Рис. 7

прямой с допустимой областью будет пустым. Поэтому то положение прямой , при котором она вышла на граничную точку допустимой области, и даст решение задачи, а соответствующее значение L и будет оптимальным значением целевой функции.

1.4 Примеры задач, решаемых графическим методом.

Пример:

Решить задачу

(1.41)

Решение

Допустимую область мы уже строили - она изображена на рис. 5.

Повторим еще раз этот рисунок, оставив только допустимую область и
нарисовав дополнительно прямые (см. рис. 8).

К-во Просмотров: 609
Бесплатно скачать Реферат: Линейное программирование: решение задач графическим способом