Реферат: Линейное программирование, решение задач симплексным методом
Х1 = 20, Х2 = 14,
при этом Zmax = 10 * 20 + 5 * 14 = 270 руб.
Таким образом, mах прибыль в 270 руб. будет получена, если предприятие произведет 20 изделий вида А и 14 изделий вида В.
Отыскание максимума линейной функции
В основе симплексного метода решения задач линейного программирования лежит с некоторыми дополнениями разобранный ранее метод последовательных исключений, представляющий собой совокупность удобных вычислительных алгоритмов, построенных на последовательном применении тождественных (симплексных) преобразований системы уравнений.
Добавляя к левой части неравенств
14X1 + 5Х2 ≤ 350,
14Х1 + 8Х2 ≤ 392,
6Х1 + 12Х2 ≤ 408,
некоторую неотрицательную величину Yj ≥ 0 (i = 1, 2, 3), (1.2)
называемую выравнивающей или базисной переменной, превратим их в уравнения:
14 |
Х1 + 5Х2 + У1 |
= 350, | |
14 |
Х1 + 8Х2 |
+ У2 |
= 392, |
6 |
X1 + 12Х2 |
+ У3 |
= 408, |
-10 |
X1 - 5Х2 |
+ Z = 0. |
(1.3)
При этом можно показать, что каждому решению системы неравенств (1.1) соответствует единственное решение системы уравнений (1.3) и неравенств (1.2) и наоборот.
Каждая из переменных Y1, У2 , У3 входит только в одно уравнение и зависит от переменных Х1 и X2 , которые мы называем свободными.
Системе (1.3) соответствует исходное допустимое базисное решение X1 = X2 = 0;
Y1 = 350; Y2 = 392; Y3 = 408 и Z = 0.
Выполняем первое тождественное преобразование системы уравнений (1.3). Выбираем разрешающий столбец, соответствующий наименьшему отрицательному элементу в Z строке, ибо теоретически установлено, что при этом можно ожидать при прочих равных условиях большего увеличения функции Z. Правую часть уравнений делим на элементы разрешающего столбца и выбираем наименьшее положительное отношение, соответствующее разрешающей строке (уравнению). На пересечении выделенных столбца и строки стоит разрешающее число.
Первое уравнение делим на разрешающее число и выписываем получившееся уравнение. Умножая это уравнение на 14, 6 и -10 и вычитая соответственно из 2-го, 3-го и 4-го уравнений системы (1.3), придем к следующей системе (1.4):
X1 + | 5/14 |
X2 + 1/4 Y1 = 25, | |
3 |
Х2 – Y1 + Y2 |
К-во Просмотров: 749
Бесплатно скачать Реферат: Линейное программирование, решение задач симплексным методом
|