Реферат: Линейное программирование
(5)
– функция Лагранжа, - множители Лагранжа.
– функция n+m переменных .
Рассмотрим стационарные точки функции , которые получим, приравняв к нулю частные производные по и по :
(6)
(7)
Если в стационарной точке (x*, y*) функция достигает минимума, то обеспечивает минимум функции q(x) и при выполнении ограничений (3), т.е. даёт решение задачи.
Задача на условный минимум целевой функции q(x) при наличии ограничений типа равенств сводится к задаче на определение стационарных точек функции Лагранжа .
3. Линейное программирование: формулировка задач и их графическое решение
3.1. Задача ЛП
Рассмотрим на примере задачи фирмы Reddy Mikks. Небольшая фабрик изготовляет два вида красок: для наружных (E) и внутренних (I) работ. Продукция поступает в оптовую продажу. Для производства красок используется два исходных продукта – A и B. Максимально возможные суточные запасы этих продуктов составляют 6т и 8т соответственно. Расходы A и B на производство 1т соответствующих красок приведены в таблице.
Исходный продукт | Расход на тонну краски | Максимальный запас, т. | |
краска E | краска I | ||
A | 1 | 2 | 6 |
B | 2 | 1 | 8 |
Суточный спрос на краску I никогда не превышает спроса на краску E более чем на 1т. Спрос на I не превышает 2т. Оптовая цена за 1т краски E – 3000$, I – 2000$. Какое количество краски каждого вида фабрика должна производить, чтобы доход от реализации продуктов был максимальным?
Так как нужно определить объём производства каждого вида краски, переменными в модели являются:
x E – суточный объём производства краски E (в тоннах);
xI – суточный объём производства краски I (в тоннах).
Обозначив доход (в тыс. $) через , можно дать математическую формулировку целевой функции: определить (допустимые) значения xE и xI, максимизирующие величину общего дохода
Ограничения на расход исходных продуктов:
(для A)
(для B)
Ограничения на величину спроса на продукцию:
Потребуем выполнения условия неотрицательности переменных:
Получили математическую модель:
Определить суточные объёмы производства (в т.) краски I и E, при которых достигается
(целевая функция)
при ограничениях
3.2. Графическое решение задачи ЛП
Построим область допустимых решений, в которой одновременно выполняются все ограничения. Искомое пространство решений – многоугольник ABCDEF. Пространство решений содержит бесконечное число точек, являющихся допустимыми решениями, но, несмотря на это, можно найти оптимальное решение, если выяснить, в каком направлении возрастает целевая функция модели z=3xE+2xI. На график наносят ряд параллельных линий, соответствующих уравнению целевой функции при нескольких произвольно выбранных и последовательно возрастающих значениях , что позволяет определить наклон целевой функции и направление её увеличения. На видно, что оптимальному решению соответствует точка C, являющаяся пересечением прямых