Реферат: Линейное программирование
Рассмотрим линейную модель, приведённую к стандартной форме:
минимизировать
при ограничениях
В первом и втором уравнениях нет переменных, исполняющих роль остаточных. Поэтому введём в каждое из этих уравнений по одной из искусственных переменных R1 и R2:
За использование этих переменных в составе целевой функции можно ввести штраф, приписывая им достаточно большой положительный коэфффициент . Получим линейную модель:
минимизировать
при ограничениях
Теперь если
,то начальное допустимое решение:
Метод оптимизации, направленный на нахождение минимального значения , приведёт к тому, что переменные R1 и R2 в оптимальном решении обратятся в нуль.
Необходимо переформулировать условие задачи, чтобы представить процесс решения в удобной табличной форме. Подставив в целевую функцию полученные из соответствующих ограничений выражения для искусственных переменных
получим выражение для :
Решение представлено в сводной таблице:
Итерация | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | Решение | Отношение |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | - |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | - |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | К-во Просмотров: 327
Бесплатно скачать Реферат: Линейное программирование
|