Реферат: Линейные метрические, нормированные и унитарные пространства
Введение
При решении многих технических и прикладных задач радиотехники возникают вопросы: как объективно сравнить какой сигнал больше другого или как оценить "близость" двух сигналов.
Оказывается, что методы функционального анализа, создав стройную теорию сигналов, в основе которой лежит концепция сигнала как элемента специально сконструированного пространства, позволяют ответить на эти вопросы.
Введем обозначения. Если R – некоторое множество элементов, то f Î R означает, что f является элементом R; или f Ï R означает, что f не принадлежит R.
Множество элементов х Î R, обладающих свойством А обозначается символом например - множество точек, принадлежащих полукругу х2 + y2 £ 1, x ³ 0.
Если M и N – два множества, то прямое произведение M х N этих множеств определяется следующим образом
то есть представляет собой множество всех упорядоченных пар (x, y), где x Î M, a y Î N.
1. Линейные метрические пространства
Множество R называется линейным пространством, если
1) в R определена операция "сложения", которая подчиняется всем правилам сложения: если f Î R, g Î R, то f + g Î R; в R имеется нулевой элемент 0 такой, что 0 +f = f для всех f Î R;
2) в R определена операция умножения элемента f Î R на числа a из множества К (aÎ К, f Î R Þa f Î R). Чаще всего К – множество всех действительных или комплексных чисел.
В дальнейшем будем рассматривать только линейные пространства.
Рассмотрим отображение Т, которое каждому элементу f Î R однозначно ставит в соответствие элемент h Î R*, где R* является также линейным пространством. Если R* = R, то Т отображает R в самого себя. Отображение Т называется оператором и отображение R в R* записывается в виде уравнения
T f = h (f Î R, h Î R*).
В частном случае, когда R* - пространство комплексных чисел, Т носит название функционала.
Пусть уравнение
T f = h
имеет единственное решение и каждому элементу h Î R* можно поставить в соответствие единственный элемент f Î R. Оператор, осуществляющий это соответствие, называется обратным по отношению к Т и обозначается Т-1 . Таким образом можно записать
f = T-1 h.
Пример. Пусть имеется система линейных уравнений
Представим эту систему в матричном виде
Если ввести пространство матриц – столбцов R, то где
и Здесь оператор А – матрица размера nxn
Если матрица А невырождена, то обратная матрица и является обратным оператором:
Определение. Линейное пространство R называется метрическим, если каждой паре элементов х, yÎR ставится в соответствие вещественное число r (x, y) – расстояние между x и y – удовлетворяющее условиям:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--