Реферат: Линейные метрические, нормированные и унитарные пространства
и
Если положить а = ¥, b = ¥, то квадрат этой нормы в теории сигналов носит название энергии сигнала.
так как такая энергия выделяется на резисторе с сопротивлением в 1 Ом при напряжении x(t) на его зажимах.
Пример. Имеется треугольный импульс длительности t:
Вычислить энергию и норму сигнала.
Решение.
3. Линейное унитарное пространство
Определение. Линейное нормированное пространство R называется унитарным, если в нем введено скалярное произведение, которое каждой паре элементов x, yÎR ставит в соответствие действительное или комплексное число (x, y), удовлетворяющее условиям
1. (x, y) = (y, x)* ( * - знак комплексного сопряжения);
2. (a1 х1 + a2 х2 , y) = a1 (x1 , y) + a2 (x2 , y) (a1 , a2 ÎK);
3. (x, x) ³ 0, если (х, х) = 0, то х = 0.
В унитарном пространстве норма вводится следующим образом
Теорема 1. Для " х, y унитарного пространства R справедливо неравенство Шварца
Равенство имеет место лишь для линейно зависимых элементов.
Теорема 2. Для " х, y унитарного пространства R имеет место неравенство
Равенство имеет место, если один из элементов х или y равен нулю или, когда х = ly(l > 0).
Теорема 3. Для " х, y унитарного пространства R выполняется равенство параллелограмма
Равенство имеет место, если один из элементов х или y равен нулю или, когда х = ly(l > 0).
Определение. Два элемента х, yÎR (x¹ 0, y¹ 0) называются ортогональными, если (х, y) = 0.
Система элементов e1 , e2 , . . . , en , . . . унитарного пространства R называется ортонормированной, если