Реферат: Локалізація та розподіл ферментних систем у рослинній клітині
· КФ 1.10 — ферменти, що взаємодіють з дифенолами та спорідненими сполуками в якості донорів;
· КФ 1.11 — ферменти, що взаємодіють з пероксидом в якості акцептора (пероксидази);
· КФ 1.12 — ферменти, що взаємодіють з воднем в якості донорів;
· КФ 1.13 — ферменти, що взаємодіють з одиночними донорами із вбудуванням молекулярного кисню (оксигенази);
· КФ 1.14 — ферменти, що взаємодіють з парними донорами з вбудовуванням молекулярного кисню;
· КФ 1.15 — ферменти, що взаємодіють з супероксид-радікалами в якосі акцепторів;
· КФ 1.16 — ферменти, що окилюють іони металів;
· КФ 1.17 — ферменти, що взаємодіють з CH чи CH2 групами;
· КФ 1.18 — ферменти, що взаємодіють з залізосірчаними білками в якості донорів;
· КФ 1.19 — ферменти, що взаємодіють з відновленим флаводоксином в якості донора;
· КФ 1.20 — ферменти, що взаємодіють з фосфором чи миш'яком в якості донора;
· КФ 1.21 — ферменти, що взаємодіють з молекулами виду X—H и Y—H з утворенням зв'язку X—Y;
· КФ 1.97 — решта оксидоредуктаз.
Гідролази (КФ 3) — клас ферментів, що каталізують гідроліз ковалентного зв'язку. Загальний вигляд реакції, що каталізується гідролазами, виглядає наступним чином:
A?B + H2O → A?OH + B?HСистематична назва гідролаз включає назву субстрату, що розщеплюється, з додаванням після неї слова -гідролаза. Однак, як правило, в тривіальній назві слово гідролаза скорочується до суфіксу «-аза».
Згідно з міжнародною класифікацією ферментів гідролази віднесені до класу (КФ 3). Клас, в свою чергу, підрозділяється на 13 підкласів в залежності від типу зв'язку, що гідролізується.
Лігази (від лат. ligāre — «зшивати», «зв'язувати») — клас ферментів (КФ 6), здатних каталізувати з'єднання двох молекул з утворенням нового хімічного зв'язку (лігування). При цьому зазвичай відбувається відщеплення (гідроліз) невеликої хімічної групи від однієї з молекул. Зазвичай реякція має вигляд:
Ab + C → A—C + b
де малі букви позначають невеликі хімічні групи, що відщеплюються лігазою.
Зазвичай назви лігаз включаються в себе слово «лігаза» (наприклад, ДНК-лігаза) або слово «синтетаза» (наприклад, аміноацил-тРНК-синтетаза). Через те, що деякі лігази додають вуглекислоту до молекули, вони мють назва карбоксилаз. Відмітьте, не слід плутати назви «синтетаза» і «синтаза», остання каталізує синтез молекул без відщеплення малої групи і згідно класифікації ферментів групується разом з ліазами.
В класифікації міжнародної комісії по ферментам, лігази класифікуються як КФ 6 та поділяються на 6 підгруп:
· КФ 6.1 включає лігази, що формують зв'язки вуглець-кисень
· КФ 6.2 включає лігази, що формують зв'язки вуглець-сірка
· КФ 6.3 включає лігази, що формують зв'язки вуглець-азот (включаючи аргінінсукцинат-синтетазу)
· КФ 6.4 включає лігази, що формують зв'язки вуглець-вуглець
· КФ 6.5 включає лігази, що формують фосфодиефірні зв'язки
· КФ 6.6 включає лігази, що формують зв'язки азот-метал
5 Локалізація ферментів у клітині
В кожній рослинній клітині синтезуються білкові молекули, які діють як каталізатори. Сотні різних ферментів, які діють в кожній клітині, прискорюють численні ферментативні реакції, послідовність яких становить так звані метаболічні шляхи. Ферментативні реакції поділяють на реакції синтезу (анаболічні) та реакції розпаду (катаболічні). Ферменти характеризуються специфічністю, з’єднуючись із субстратом, вони утворюють короткоживучий фермент – субстратний комплекс, який по закінченні реакції розпадається на продукти реакції та фермент. Фермент в реакції не змінюється. Концентрації ферменту і субстрату при певних умовах значно впливають на швидкість ферментативної реакції. Концентрація ферменту помітно позначається на швидкості ферментативної реакції тоді, коли спостерігається значний надлишок субстрату. Як правило, згадану залежність на графіку можна показати прямою лінією. Лише в разі порушення нормального перебігу реакції (під впливом інгібіторів або активаторів, при затримці пересування молекул субстрату до молекул ферменту) спостерігається відхилення від загальної закономірності.
Ферменти резистентного дихання
Мітохондрії рослин відрізняються від мітохондрій тварин тим, що в них можуть функціонувати два різних шляхи перенесення електронів від субстрату типу НАД•Н та сукцинату до О2. Якщо один з цих шляхів пригнічується з допомогою KCN-ціанідів, що блокують цитохромоксидазу, то інший шлях не блокується ціанідом, а тому його називають ціанід резистентним ланцюгом перенесення електронів. Аналогічно сам окислювальний процес, що призводить до утворення такого термінального ланцюга, має назву ціанідрезистентного дихання, або дихання, стійкого до ціаніду. Слід підкреслити, що ці два ланцюги не зовсім незалежні. Справа в тому, що в обох випадках введення в ланцюг електронних пар здійснюється внутрішньою та зовнішньою НАДН-дегідрогеназою та сукцинатдегідрогеназою і далі вони передають на убіхінон. Тільки потім, після убіхінону, спостерігається розділення їхніх дальших шляхів. В нормальному ланцюгу електрони поступово переносяться через ФП, цитохроми b- і с- типу та цитохромоксидазу до О2, тоді як в ціанід резистентному ланцюгу електрони переносяться від убіхінону на ФП, а потім через ціанідрезистентну термінальну оксидазу теж на О2. Природу термінальної оксидази поки що не вивчено. Вважають, що це залізо сірчаний білок, що не є гемопротеїном. Фізіологічне значення ціанідрезистентного дихання не зрозуміле. Вважають, що воно відповідає за клімактерій у плодів, тобто посилення дихання в процесі перед дозріванням плодів. Є дані, що клімактерій індукується етиленом, тому вважають, що етилен стимулятор ціанідрезистентного дихання. Доведено, що у деяких проростків цей тип дихання функціонує на ранніх етапах (бубнявіння насіння).