Реферат: Математическая модель системы в переменных пространства состояний
и ее ранг rank2, то есть настоящая система полностью управляема по состояниям.
Задача 4.2.2
Определить управляемость по выходам динамической системы, заданной векторными уравнениями
,
.
Решение.
В соответствии с выражением (4.1.2) запишем матрицу управляемости для n=2, так как в рассматриваемом случае размерность вектора состояний n=2
.
Найдем произведение матриц
.
.
Следовательно, матрица управляемости имеет вид
,
и ее ранг rank=2, то есть настоящая система полностью управляема по выходам.
5. НАБЛЮДАЕМОСТЬ
5.1. ОСНОВНЫЕ ПОНЯТИЯ И РАСЧЕТНЫЕ ФОРМУЛЫ
Наблюдаемость системы (2.1.1), (2.1.2) определяется теоремой (критерием) Калмана: система будет вполне наблюдаемой тогда и только тогда, когда ранг матрицы наблюдаемости L0 размерности равен n, то есть
rankn, (5.1.1)
где
. (5.1.2)
Если rank<n, то система будет не вполне наблюдаемой, а при rank=0 – полностью ненаблюдаемой.
5.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача 5.2.1
Определить наблюдаемость динамической системы, заданной векторными уравнениями
.
Решение.
В соответствии с выражением (5.1.2) запишем матрицу наблюдаемости для n=2, так как в рассматриваемом случае размерность вектора состояний n=2
.
Найдем произведение матриц
.
Следовательно, матрица наблюдаемости имеет вид
,
и ее ранг rank2, то есть настоящая система полностью наблюдаема.