Реферат: Математическая теория захватывания

(23a)

§ 3 Отыскание периодического решения в области резонанса.

Тогда l=mlо ; w2 = 1+ aо m, (24) (aо , m - расстройка , реальный физический резонанс наступает при aо ¹ 0).

Тогда исследуемое уравнение имеет вид :

(25)

При m = 0 периодическое решение будет иметь вид : (26)

Следуя Пуанкаре, мы можем предположить периодическое решение в виде:

(27);

Начальные условия возьмем как и раньше:

Аналогично тому, как мы это делали в предыдущих параграфах. Подставляем (27) в (25) и, сравнивая коэффициенты при b1 b2 , m и других интересующих нас величинах, получим уравнение, которым удовлетворяет A, B, C, D, E, F. Начальные условия для этих уравнений определим, если подставим (28) в (27).

(29)

Запишем условия периодичности для (27):

Делим на m:

( 30a )

Необходимым условием существования периодического решения является:

Эти уравнения определяют P и Q решения (26), в близости к которому устанавливается периодическое решение. Они могут быть записаны в раскрытой форме :

(31)

Для существования искомого периодического решения достаточно неравенство 0 детерминанта: (см. § 1).

D, Е и их производные найдутся из (29) при помощи формул аналогичных (15). Заметим, что (30) мы можем определить b1, b2 , в виде рядов по степеням m. Таким образом, мы можем (27) как и в § 1 представить в виде ряда.

(33)

P,Q-определяются формулами (31) (32).

§ 4 Исследование устойчивости периодических решений в области резонанса

Аналогично тому, как мы это делали в § 2, составим уравнение первого приближения, порожденное решением (33).

Решение опять будем искать в виде . Однако нет необходимости проделывать все выкладки заново. Воспользуемся результатами § 2, приняв:

К-во Просмотров: 301
Бесплатно скачать Реферат: Математическая теория захватывания