Реферат: Математическая теория захватывания

(36)

;

Тогда, зная функцию f, мы можем вычислить D в виде функции P, Q и aо .

Заметим, что равенство (23 а) в нашем случае имеет вид:

; (37)

Опираясь на результаты исследования, полученных в § 2, нужно рассмотреть при исследовании устойчивости два случая: (при достаточно малых m)

1) p2 - q < 0

2) p2 - q > 0

В первом случае устойчивость характеризуется условием q < 1 или, что то же самое b < 0.

Во втором случае (*) последнее может быть выполнено только, если b < 0, а D> 0. Нетрудно видеть, что необходимым достаточным условием в обоих случаях является b < 0, D> 0. (Это можно получить из неравенства (*)).

§ 5 Применение общих формул, полученных в предыдущих параграфах, к теории захватывания в регенеративном приемнике для случая, когда характеристика - кубическая парабола.

Мы рассмотрим простой регенеративный приемник с колебательным контуром в цепи сетки, на который действует внешняя сила Ро sinw1 t.

Дифференциальное уравнение колебаний данного контура следующее:

(39)

Считая, что анодный ток зависит только от сеточного напряжения, а также, что характеристикой является кубическая парабола:

(40)

S-крутизна характеристики, К - напряжение насыщения .

Далее, вводя обозначения:

Получим дифференциальное уравнение для х:

(41)

А: (случай далекий от резонанса).

Для него применяем результаты § 1, полагая.

Исходное решение в не посредственной близости, к которому устанавливается искомое решение следующее:

Если w> 1, т.е. wо > w1 , то разность фаз равна 0, если w< 1, то разность фаз равна p. В этом отношении все происходит в первом приближении также, как и при обычном линейном резонансе. Устойчивость определяется знаком b (b < 0).

(42).

Т.е. те решения, для которых выполняется это условие, устойчивы.

В: (область резонанса , § 3, 4).

К-во Просмотров: 298
Бесплатно скачать Реферат: Математическая теория захватывания