Реферат: Математические методы описания моделей конструкций РЭА

В теории множеств часто пользуются понятием логической эквивалентности, обозначаемой. Например, запись

нужно читать: «Выполнение условий X Y и YX , тoже самое что X = ӻ.

Пример 1. Доказать с помощью тождественных преобразований равенство ( X У) Z = ( X Z ) Z ) и показать с помощью диаграмм его коммутативные свойства.

Решение. Это равенство известно как тождество дистрибутивности операций над множествами. Чтобы убедиться в справедливости этого тождества, положим . Тогда одновременно и , что возможно в случае, когда или , т. е. .Отсюда можно заключить, что .Аналогично доказывается соотношение . В соответствии с определением равенства множеств приходим к требуемому тождеству.

На рис. 4, а показан набор исходных множеств X , У и Z, а на рис. 4, б, в— комбинация множеств в соответствии с выражениями и .

Внутренние области, ограниченные жирными линиями, совпадают. Можно проследить, что операции над множествами по их объединению или пересечению обладают также коммутативностью и ассоциативностью.

Отношения множеств. Виды отношений и их свойства

Элементы множества, как правило, находятся в каком-либо отношении друг относительно друга. Эти отношения можно задать в виде неполных предложений — предикатов, например, «меньше, чем...», «больше, чем ...», «эквивалентно», «конгруэнтно» и т. п.

Тот факт, что некоторый элемент находится в каком-либо отношении к элементу того же множества xj , математически записывают как XiRxj , где R — символ отношения.

Отношение из двух элементов множества X называют бинарным. Бинарные отношения множеств X и Y представляют собой некоторое множество упорядоченных пар (х, у), образованных декартовым произведением X х Y . В общем случае можно говорить не только о множестве упорядоченных пар, но и о множестве упорядоченных троек, четверок элементов и т. д., т. е. о парных отношениях, получаемых в результате декартова произведения , где п — размерность n -строчек.

Рассмотрим основные виды отношений — отношения эквивалентности, порядка и доминирования.

Некоторые элементы множеств можно считать эквивалентными в том случае, когда любой из этих элементов при определенных условиях можно заменить другим, т. е. данные элементы находятся вот-ношении эквивалентности. Примерами отношений эквивалентности являются отношения параллельности на множестве прямых какой-либо плоскости; подобия на множестве треугольников; принадлежности к одной функциональной группе микросхем или к одному классу типоразмеров и т. д.

Термин «отношение эквивалентности» будем применять при выполнении следующих условий:

1) каждый элемент эквивалентен самому себе;

2) высказывание, что два элемента являются эквивалентными, не требует уточнения того, какой из элементов рассматривается первым, а какой вторым;

3) два элемента, эквивалентные третьему, эквивалентны между собой.

Введем для обозначения эквивалентности символ ~, тогда рассмотренные условия можно записать следующим образом:

1) х ~ х (рефлективность);

2) х ~ уу ~ х (симметричность);

3) х ~ у и у ~ z х ~ z (транзитивность).

Следовательно, отношение R называют отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Пусть некоторому элементу х X эквивалентно некоторое подмножество элементов А X , тогда это подмножество образует класс эквивалентности, эквивалентный х. Очевидно, что все элементы одного и того же класса эквивалентности эквивалентны между собой (свойство транзитивности). Тогда всякий элемент хХ может находиться в одном и только одном классе эквивалентности, т. е. в этом случае множество X разбивается на некоторое непересекающееся подмножество классов эквивалентности , где J — некоторое множество индексов.

Таким образом, каждому отношению эквивалентности на множестве X соответствует некоторое разбиение множества X на классы .

Часто сталкиваются с отношениями, которые определяют некоторый порядок расположения элементов множества. Например, в процессе автоматизированного конструирования требуется вводить множество одних исходных данных раньше или позже, чем множество других. При этом может оказаться, что элементы одного множества больше или меньше элементов другого и т. д. Во всех этих случаях можно расположить элементы множества X или группы элементов в некотором порядке (например, в виде убывающей или возрастающей последовательности), т. е. ввести отношение порядка на множестве X.

Различают отношения строгого порядка, для которых применяют символы и отношения нестрогого порядка, где используют символы . Эти отношения характеризуются следующими свойствами:

для отношения строгого порядка:

х < X — ложно (антирефлексивность);

х<У, а У<х — взаимоисключаются (несимметричность);

К-во Просмотров: 220
Бесплатно скачать Реферат: Математические методы описания моделей конструкций РЭА