Реферат: Математические методы описания моделей конструкций РЭА

для отношения нестрогого порядка:

х X— истинно (рефлексивность);

ху и ух х = у — (антисимметричность);

х у и у z x у z — (транзитивность).

Множество X называют упорядоченным, если любые два элемента х и у этого множества сравнимы, т. е. если для них выполняется одно из условий: х < у, х = у, у < х.

Упорядоченное множество называют кортежем. В общем случае кортеж — это последовательность элементов, т. е. совокупность элементов, в которой каждый элемент занимает вполне определенное место. Элементы упорядоченного множества называются компонентами кортежа. Примерами кортежа может служить упорядоченная последовательность чисел арифметической или геометрической прогрессий, последовательность технологических операций при изготовлении какого-либо радиоэлектронного изделия, упорядоченная последовательность установочных позиций печатной платы для закрепления конструктивных элементов.

Во всех этих множествах место каждого элемента вполне определено и не может произвольно изменяться.

При обработке конструкторской информации на ЭВМ часто используют отношения доминирования. Говорят, что х X доминирует над у X , т. е. х>>у, если элемент х в чем-либо превосходит (имеет приоритет) элемент у того же множества. Например, под х можно понимать один из списков данных, который должен поступить на обработку первым. При анализе нескольких конструкций РЭА какой-либо из них должен быть отдан приоритет, так как эта конструкция обладает лучшими, с нашей точки зрения, свойствами, чем другие, т. е. конструкция х доминирует над конструкцией у.

Свойство транзитивности при этом не имеет места. Действительно, если, например, конструкцию х по каким-либо одним параметрам предпочли конструкции у, а конструкцию у по каким-либо другим параметрам предпочли конструкции z, то отсюда еще не следует, что конструкции х должно быть отдано предпочтение по сравнению с конструкцией г.

Отображение множеств. Одним из основных понятий теории множеств является понятие отображения. Если заданы два непустых множества X и Y , то закон, согласно которому каждому элементу xX ставится в соответствие элемента, называют однозначным отображением X в Y или функцией, определенной на X и принимающей значение на Y .

На практике приходится иметь дело и с многозначными отображениями множества X на множестве Y , которые определяют закон, согласно которому каждому элементу х X ставится в соответствие некоторое подмножество , называемое образом элементов. Возможны случаи, когда Гх = 0.

Пусть задано некоторое подмножество А X . Для любого хА образом х является подмножество . Совокупность всех элементов Y , являющихся образами для всех х в А, назовем образом множества А и будем обозначать ГА. В этом случае

К-во Просмотров: 221
Бесплатно скачать Реферат: Математические методы описания моделей конструкций РЭА