Реферат: Математические методы в организации транспортного процесса




Х 3

Х 2

Х 8


Х 6


  1. Построение математической модели.

Пусть G(A, U) – граф, где A – множество вершин, означающих объекты (базу – вершина 1, а магазины – вершины 2, 3, 4, 5, 6, 7, 8), U – множество рёбер, означающих возможную связь между двумя вершинами. Каждому ребру поставлено в соответствие некоторое число L ij (i, j = 1, 2,…, 8 – вес ребра (расстояние между двумя вершинами).

Задача отыскания кратчайшего пути из вершины i в вершину j заключается в минимизации целевой функции:


Y = L i X ij ,


где X ij = 1, если путь проходит из вершины i в вершину j,

X ij = 0, в противном случае.

Данная функция определяет длину между заданной начальной и конечной вершинами.

При этом должны выполняться следующие условия:


(X ij – X ji) = 0, i = 2, 3,…,m – 1


(т. е. для любой вершины i, исключая начальную и конечную, число путей, входящих в эту вершину, равно чису путей, выходящих из неё);


(X 1j – X j1) = 1.


(т. е. в последнюю вершину входит на один путь больше, чем выходит);


(X mj – X jm) = 1.


(т. е. количество путей, входящих в вершину 1, превышает на единицу число путей, выходящих из неё).

Необходимо определить такие значения X ij, равные 0 или 1, которые

доставят минимум целевой функции Y при соблюдении условий, заданных ограничениями.

Данная задача является задачей о кратчайшем пути и может быть

решена индексно – матричным методом.


  1. Решение задачи.

Составим матрицу весов графа, представленного на рисунке. Эле-

мент L ij этой матрицы равен весу ребра, если вершины i и j связаны между собой ребром, и бесконечности – в противном случае. Диагональные элементы также равны бесконечности, так как граф без петель. Для наглядности в матрицу весов бесконечности записывать не будем, оставляя соответствующие им клетки пустыми.

Добавим к составленной таким образом матрице нулевую строку и

К-во Просмотров: 322
Бесплатно скачать Реферат: Математические методы в организации транспортного процесса