Реферат: Математические строи

Итак, звуки диатонической мажорной гаммы чистого строя в долях струны выразятся следующими отношениями:

c d e f g a h c

1 8/9 4/5 3/4 2/3 3/5 8/15 1/2

Взяв в качестве основного интервала б. терцию и рассуждая аналогичным образом, мы найдем, что звуки фригийской гаммы выразятся:

с des es f g as b cl

1 15/16 5/6 3/4 2/3 5/8 5/9 1/2

Если, двигаясь квинтовыми и терцовыми ходами, найти части струны, соответствующие звукам fis, cis, gis и т. д. до his включительно, и части струны, соответствующие звукам ges, ces, fes и т. д. до deses включительно, то окажется, что his ниже с1, a deses выше с. Действительно, звуку his, получаемому путем движения на 3 б. терции вверх от с (с-е- gis-his), будет соответствовать 64/125 струны (1Х4/5Х4/5Х 4/5) (звуку с1 соответствует 64/128, т. е. 1/2 струны). Звуку deses, получаемому путем движения на 3 б. терции вниз от с1 (с1-as-fes-deses), будет соответствовать 125/128 струны (1/2X5/4X5/4X5/4) (звуку с соответствует 128/128, т. е. целая струна).

Разница между his и с1, deses и с ? 1/5 части тона.

Таким образом, чистый строй, подобно пифагорову, есть строй незамкнутый.

Если исследовать все интервалы, входящие в состав приведенной выше диатонической мажорной гаммы чистого строя, то не трудно убедиться, что в этом строе некоторые одноименные интервалы на различных ступенях гаммы имеют различные интервальные коэфициенты.

Так:

1) квинты на 1, 3, 4, 5 и 6-й ступенях выражаются отношением 2/3 (c-g-2/3; e-h-8/5:4/5=2/3; f-с1-1/2:3/4=2/3; g-d1-4/9:2/3=2/3; а-е1- 2/5:3/5=2/3);

2) квинта на 2-й ступени d-а выражается отношением 27/40 (3/5:8/9=27/40);

3) м. терции на 3, 6-й и 7-й ступенях выражаются отношением 5/6 (e-g-2/3:4/5=5/6; а-с1-1/2:3/5=5/6; h-d1- 4/9:8/15=5/6);

4) м. терция на 2-й ступени d-f выражается отношением 27/32 (3/4:8/9=27/32);

5) б. секунда на 1, 4-й и 6-й ступенях выражается отношением 8/9 (c-d-8/9; f-g-2/3:3/4=8/9; a-h-8/15:3/5=8/9);.

6) б. секунда на 2-й и 5-й ступенях выражается отношением 9/10 (d-e-4/5:8/9=9/10; g-a-3/5:2/3=9/10).

Таким образом, в диатонической мажорной гамме чистого строя два интервальных коэфициента имеют:

квинта -2/3 и 27/40 (2/3=27/40X80/81)

кварта-3/4 и 20/27 (20/27=3/4X80/81)

м. терция - 5/5 и 27/32 (5/6=27/32X80/80)

б. свиста -3/5 и 16/27 (16/27=3/5X80/81)

б. секунда- 8/9 и 9/10 (8/9=9/10X80/81)

м. септима -9/16 и 5/9 (5/9=9/916X80/81).

Интервал 80/81, на который некоторые интервалы чистого строя больше или меньше соответствующих интервалов пифагорова строя, называется "дидимовой коммой". Дидимова комма ? 1/10 тона. На эту же комму, б. терция пифагорова строя больше чистой (64/81=5/4x80/81). Так как диатонический полутон, например, с - des, получается посредством ходов:

с - f - des

и выражается отношением 15/16 (3/4x5/4=15/16), а хроматический полутон, например, с - cis, получается посредством ходов:

с - f - а - cis1 - cis

и выражается отношением 24/25 (3/4x4/5x4/5x2) и так как дробь 24/25 больше 15/16, то звук сis (как соответствующий больщему отрезку струны) ниже звука des. Таким образом, в чистом строе диатонический полутон больше хроматического (см. строй Пифагора). Из всего вышеизложенного, можно сделать следующие выводы:

К-во Просмотров: 1509
Бесплатно скачать Реферат: Математические строи