Реферат: Механизм и кинетика переходных процессов на межфазных границах электрохимических преобразователей энергии на основе низкотемпературных твердых электролитов

Выделившиеся фазы не являются конечными продуктами разложения, т. к. иод вступает в химическую реакцию С CU4R.

Кинетика электродной реакции с участием Си2 П1.13.14.201. В данном разделе рассматривается кинетика реакции (5) в электронной подсистеме при потенциалах от -60 мВ потенциал разблокирования реакции (4) до потенциала разложения, т.е. без выделения новых фаз на электроде.

В этих координатах зависимости близки к прямым. Следовательно, гальваностатические исследования подтверждают, что лимитирующей стадией электродной реакции (5) является замедленная диффузия Си2+ в электролите.

Однако прямые не экстраполируются в нуль координат. Следовательно, при 0 перенапряжение Т=0. Это перенапряжение является перенапряжением переноса заряда не превышает 8 мВ.

Известно, что и = 2 соответствует случаям прогрессирующего образования центров с двухмерным разрастанием осадка по поверхности электрода или одновременного образования центров с трехмерным разрастанием. Однако трудно предположить, что на индифферентном электроде возможен двухмерный рост меди. Поэтому логично утверждать, что на стеклоуглероде осаждение меди происходит с одновременным образованием центров и трехмерным ростом осадка, что подтверждается исследованиями морфологии осадка.

Следовательно, при значительной катодной поляризации стеклоуглерода электродные реакций в электронной и ионной подсистемах протекают параллельно. В этих условиях сравнительно низкие токи электронной подсистемы практически незаметны на фоне высоких значений токов ионной подсистемы, поэтому кинетика электродной реакции в конечном счете определяется скоростью реакции в ионной подсистеме.

Химическое взаимодействие Си с иодом 7.16.18. Иод является очевидным катодным материалом в электрохимических элементах.

Однако известно, что иод химически взаимодействует с. Следовательно, сохранность заряда элемента (21) будет определяться скоростью химического взаимодействия иода с электролитом.

Экспериментально метод исследования скорости взаимодействия осуществляли следующим образом. На ячейку (1) подавали гальваностатический импульс, в результате чего происходило электрохимическое разложение электролита с выделением иода на стеклоуглероде. При этом ячейка (1) превращалась в ячейку (21). Количество выделяющегося йода регулировали длительностью импульса.

Атом иода Уг h в структуре кристалла электролита может быть представлен

как ион I- с локализованной на нем дыркой. Поэтому здесь можно говорить не о давлении паров йода, а о его концентрации в электролите около электродов.

Предположим, что скорость взаимодействия лимитируется диффузией йода в зону реакции. В этом случае уравнение нестационарной диффузии Фика для концентрации йода у поверхности стеклоуглерода в ячейке единичной площади поперечного сечения будет выглядеть в удобной для графического анализа.

Саморазряд ячейки (21) определяется убылью йода как катодного материала. В условиях стационарной диффузии {при избытке йода на стеклоуглеродном электроде и предположении, что весь йод, продиффундировавший к медному электроду, реагирует с медью по реакции (23)}, для образца Cu4RbCl3l2 толщиной 2 мм убыль иода с углеродного электрода составляет 1,1х10г/см.

Таким образом, иод не может быть подходящим катодным материалом для элементов постоянной готовности с твердым электролитом СиД, т. к. скорость химического разложения электролита йодом сравнительно велика и продукты реакции имеют низкую ионную проводимость. Поэтому более целесообразны резервные элементы, приводимые в рабочее состояние непосредственно перед использованием путем электрохимического разложения электролита, при котором на одном из электродов выделяется медь, а на другом – йод.

В третьей главе приведены результаты исследования электродных реакций на медном электроде в электролите СШ при различных потенциалах.

Механизм и кинетика электродного процесса при потенциалах вблизи равновесного. В условиях массового производства активных масс для медного электрода и самих электродов трудно предотвратить образование оксидов на поверхности меди вследствие чрезвычайно высокой склонности меди к окислению. Можно предположить, что в этих условиях слой оксидов на поверхности меди будет практически всегда и вопрос лишь в толщине слоя. Поэтому основной задачей данной части работы было выяснение причины высокой поляризуемости медного электрода путем исследования влияния слоя оксидов на механизм и кинетику электродного процесса.

При температурах менее 500 °С на меди образуется закись меди Cu. Прямые измерения толщины слоя оксида в условиях, аналогичных нашим, дают около микрона. По литературным данным, в процессе дальнейшего отжига на поверхности закиси меди образуется окись меди СиО. Это приводит к возникновению в закиси меди электронных дырок и вакансий меди. Подвижность вакансий меди при комнатной температуре на несколько порядков величин меньше, чем подвижность дырок. Поэтому закись меди имеет чрезвычайно низкую ионную проводимость и является полупроводником типа. Поэтому при отжиге некоторое количество атомов металлической меди переходит из электрода в закись меди с образованием Си+ и подвижных электронов. Эти ионы занимают вакансии в решетке окисла, а электроны ассоциируют с дырками. Следовательно, в закиси меди около медного электрода образуется область, обедненная дырками.

В то же время твердый электролит СиД всегда содержит некоторое количество Си2*, поэтому на границе СиО/СиД может протекать реакция (5) генерации – рекомбинации дырок.

Отсюда следует, что медный электрод в электролите СиД в данных условиях по сути является полупроводниковым, т. к. реакция в электронной подсистеме идет на границе Си0/СиД, а медная подложка является лишь контактом.

Как видно начальные участки гальваностатических кривых границы СиО/СиД в координатах (15) близки к прямым при 8…10 мВ. Следовательно, как и в случае стеклоуглеродного электрода, скорость электродного процесса лимитируется замедленной диффузией Си в электролите.

При ф > 8…10 мВ гальваностатические кривые не соответствуют (0), причем эффективное сопротивление границы уменьшается. По-видимому, в этих условиях слой Cu0 разрушается. При этом осуществляется непосредственный контакт меди с электролитом, ячейка (27) превращается в ячейку (1) и появляется возможность для протекания реакции (4) с участием меди.

Из литературных данных оценена величина напряженности электрического поля Е = U/d, при которой происходит разрушение. Эта величина равна 4x102 В/см. При напряжении U = 10 мВ и при указанном Е толщина слоя Cu20 составляет около микрона. Расчетная величина толщины одного порядка с известными результатами прямых измерений.

Таким образом, слой закиси меди Cu20 на границе раздела медного электрода с CU4RDCI3I2 блокирует протекание электрохимической реакции в ионной подсистеме с участием меди. Поэтому медный электрод при низких перенапряжениях ведет себя как индифферентный и на нем протекает только реакция (5) в электронной подсистеме.

Средние и высокие потенциалы.

Анодное растворение. Потенциостатические кривые анодного растворения меди при потенциалах, незначительно превышающих напряжение разрушения оксидной пленки на поверхности электрода, типичны для образования и разрастания центров растворения (рис. 7–1). Начальные участки таких кривых описываются зависимостью (20). Оказалось, что величина растет с повышением потенциала примерно от 1 до 2. Следовательно, при сравнительно низких потенциалах скорость анодного растворения меди лимитируется двухмерным разрастанием центров растворения при одновременном образовании N0 этих центров и ток при небольших временах изменяется. С повышением потенциала зависимость тока от времени в потенциостатических условиях становится менее выраженной, а при 120 мВ и более в миллисекундном интервале вообще исчезает.

При небольших перенапряжениях iQ «0 (7–3). Следовательно, толщина электрода в этих условиях не увеличивается, но на его поверхности интенсивно растут иглы и дендриты. При повышении перенапряжения токи 0 появляются и увеличиваются с потенциалом. На рис. 12 приведена зависимость V2 и V-i, расчитанных по (32) и (33), от потенциала Из этого рисунка следует, что при сравнительно низких перенапряжениях скорость роста игл и дендритов намного превышает скорость роста толщины осадка. С повышением перенапряжения разность скоростей сокращается и они сравниваются при перенапряжениях более 80… 100 мВ. Следовательно, при этих перенапряжениях преимущественно увеличивается толщина сплошного осадка.

Таким образом, на медном электроде при повышенных потенциалах реакции в ионной и электронной подсистемах также протекают параллельно. При анодной поляризации именно электронная подсистема приводит к появлению нестехиометричного приэлектродного слоя электролита по реакциям (5) и (6), а иногда даже выделению на медном электроде фазы двухвалентной меди, что экспериментально обнаружено Л.Д. Юшиной.

О применимости уравнений диффузионной кинетики. В случае медьпроводящих твердых электролитов, например, СиД, в ячейках (1) концентрация электронных дефектов (дырок или Си24) в электролите должна соответствовать равновесию реакции (26) и потенциал р0 индифферентного электрода должен быть равен нулю относительно меди. Однако в реальных ячейках (27) не равен нулю и составляет, как правило, 0,4…0,5 В. Следовательно, можно предположить, что в электролите имеет место значительный начальный градиент концентрации электронных дефектов и применение диффузионных уравнений (при выводе которых одним из граничных условий является отсутствие такого градиента) неправомочно. Однако в главах 2 и 3 показано, что кинетические закономерности электродных процессов с участием электронных дефектов хорошо описываются уравнениями диффузионной кинетики.

Это кажущееся противоречие можно объяснить своеобразным начальным концентрационным профилем электронных дефектов в ячейке (27), построенным с помощью (2), (3) и (28) и приведенным. Видно, что практиче-ски весь градиент концентрации электронных дефектов сосредоточен в тонком слое окислов меди по причинам, освещенным в главе 3. Собственно в электролите, т.е. между границами СиО/ОК и СиД/С, на которых идут электрохимические реакции, начальная разность концентраций составляет менее одного порядка величин.

К-во Просмотров: 223
Бесплатно скачать Реферат: Механизм и кинетика переходных процессов на межфазных границах электрохимических преобразователей энергии на основе низкотемпературных твердых электролитов