Реферат: Место аналогии в обучении математике в школе
ÐА=ÐВ.
Задача 53 из § 6
Доказать, что углы при каждом основании равнобедренной трапеции равны.
Доказательство:
1) Пусть АВСД – равнобокая трапеция (АД=СВ). Из вершин Д и С проведем высоты ДЕ и СF.
2) ∆АДЕ=∆ВСFпо катету и гипотенузе (ДЕ=СF, так как АВ║СД; АД=СВ по условию).
Отсюда
ÐА=ÐВ и
ÐАДЕ=ÐВСF;
ÐАДС=ÐАДЕ + 90, отсюда следует, что
Ð0ДСВ=ÐВСF + 90 ÐАДС=ÐДСВ
Задачи, аналогичные данным, учащиеся могут составлять самостоятельно и решать их.
Приведем краткий список аналогичных задач на построение из учебного пособия А. В. Погорелова «Геометрия 6 – 10» (1985)
Постройте треугольник по двум сторонам и медиане, проведенной к третьей стороне (§5,№ 27). Постройте параллелограмм по стороне и двум диагоналям (§6, №19(2)). Постройте треугольник, если заданы сторона, прилежащий к ней угол и сумма двух других сторон (§5, № 41). |
Постройте треугольник по двум сторонам и высоте, опущенной на третью сторону (§5, №31). Постройте трапецию по основаниям и диагоналям (§6,№ 66). Постройте треугольник, если заданы сторона, прилежащий к ней угол и разность двух других сторон (§5, № 42). |
В табл. 3 даны решения двух задач на построение, на которых удобно демонстрировать аналогию.
Таблица 3
Постройте трапецию по диагона- Постройте параллелограмм по диа-
лям , углу между ними и одному из гоналям и углу между ними (§6, № 20(2)).
оснований.
А н а л и з
Предположим, что трапеция АВСД Предположим, что параллелограмм
построена (см. рисунок). АВСД построен (см. рисунок).
Р Д С Д С
А В В1 А В В1
Попробуем построить сначала треугольник,
используя данные нашей задачи.
Через одну из вершин (С)
Трапеции Параллелограмма
проведем прямую, параллельную диагонали ВД, до пересечения с продолжением основания АВ. Получим треугольник АВ1 С, который можно построить по двум сторонам и углу между ними (АС – дано, С В1 = ВД, так как В В1 СД параллелограмм, Ð АСВ1 = Ð АОВ как соответственные углы при параллельных прямых ВД и СВ1 ).
П о с т р о е н и е
Строим треугольник АС В1 по двум сторонам и углу между ними.
От точки А на стороне АВ1 отло- Из вершины С проведем медиану СВ.
жим отрезок, равный АВ. Через точ- через точки В и С проведем прямые,
ку С проведем прямую СР, парал- параллельные соответственно В1 С и
лельную основанию АВ; затем через АВ. Точка Д пересечения этих прямых
точку В проведем прямую, параллель- будет четвертой вершиной искомого
ную В1 С, до пересечения с прямой СР. параллелограмма АВСД.
Точка Д пересечения этих прямых
будет четвертой вершиной искомой
трапеции АВСД.
Мы описали различные подходы к обучению метода аналогии школьников 11-13 лет. По мере взросления учащихся им все чаще будут встречаться возможности для применения аналогии. Она может использоваться при формировании многих понятий стереометрии, при доказательстве теорем и решении задач. Однако учащиеся реализуют эти возможности лишь после специального обучения.
ПОЛОЖИТЕЛЬНАЯ РОЛЬ АНАЛОГИИ В ПЛАНИМЕТРИИ И СТЕРЕОМЕТРИИ
В действующем школьном курсе геометрии абсолютное большинство стереометрических фактов излагается без установления внутрипредметных связей с аналогичными планиметрическими фактами. Примером тому может служить изолированное изложение таких тем, как «Треугольник и его свойства» и «Тетраэдр и его свойства»; «Окружность, круг и его свойства» и «Сфера, шар и их свойства» и т. д. Все это есть следствие линейного построения курса геометрии. Целесообразно же на основе линейно – концентрической организации курса увязать эти плоскостные и пространственные темы. Развернем отмеченное положение несколько шире вначале в теоретическом, а затем и в практическом аспекте.
Различные формы уровневой и профильной дифференциации могут быть реализованы на практике в полной мере лишь в том случае, если будут подготовлены соответствующие учебники, в том числе и по геометрии. Эти учебники должны не только быть разными по содержанию и по форме изложения, но и иметь существенно различную логико-структурную организацию. Сейчас школьные учебники геометрии ориентированы в основном на аксиоматическое и силлогистическое изложение. Чрезмерное же акцентирование в обучении дедуктивного характера математики создает серьезную опасность для математического образования. В обучении математике в целом, равно как и в обучении геометрии, необходимо сочетание логики и интуиции, дедукции и индукции, конкретизации и обобщения, анализа и синтеза.
Целесообразна трансформация линейного построения содержания школьного курса геометрии в линейно – концентрическое, что даст возможность проводить глубокие сравнения, широкое обобщение, выдвигать гипотезы и предположения, переносить знания, умения и навыки в новую ситуацию, переосмысливать с новых, более общих позиций уже изученный ранее изученный материал. Большую роль при этом будут играть аналогии, интуитивные рассуждения, позволяющие приобщить учащихся к исследовательской деятельности.
Курс школьной геометрии должен быть таким, чтобы он прежде всего побуждал учащихся к постановке вопросов, выдвижению гипотез, создавал бы условия для эффективных поисков. Реализация идей уровневой и профильной дифференциации предполагает одновременное существование как учебников геометрии, построенных на глобальной аксиоматической организации теории, так и учебников, построенных на идеях локальной аксиоматизации и локальной дедукции. Здесь налицо создание таких учебников геометрии, в котором бы разумнее дозировались логический и интуитивный компоненты; школьный курс геометрии есть «химическое соединение интуиции и логики».
Глобальная аксиоматизация должна завершать, а не начинать длительный процесс развития теории; локальная индукция позволяет сделать главным в обучении геометрии не развитие теории из готовой аксиоматики, а процесс создания аксиоматики. Такой подход в большей степени, чем традиционный, обеспечивает взаимодействие наглядно – образного и словесно – логического мышления.
На примерах покажем, что многие пространственные факты являются обобщениями плоскостных аналогов. Приведенный ниже материал может служить хорошим подспорьем в организации исследовательской работы учащихся.
П р и м е р 1. Плоскостная изопериметрическая теорема – пространственная изопериметрическая теорема.
Часто можно слышать расхожую фразу: «Круг и шар – наиболее совершенные фигуры». Какой смысл вкладывается в это высказывание? Рассуждения, приведенные ниже, прольют свет на поставленный вопрос.
В планиметрии известна такая теорема: «Из всех изопериметрических плоских фигур наибольшую площадь имеет круг». Другими словами эту теорему можно сформулировать иначе: «Из всех плоских фигур равного периметра наибольшую площадь имеет круг».