Реферат: Место аналогии в обучении математике в школе
Частное 4pS/L2 зависит только от формы фигуры и не зависит от его размеров. Действительно, если мы, не изменяя формы, увеличим линейные размеры фигуры в отношении ½, то периметр станет равен 2L, а площадь - 4S, но частное S/L2 , как и частное 4pS/L2 , остается неизменным. Эта закономерность справедлива при увеличении линейных размеров в любом отношении.
Плоскостная изопериметрическая теорема может быть сформулирована и в таком виде: «Из всех плоских фигур равной площади наименьший периметр имеет круг».
Аналогом, в стереометрии этой последней формулировке теоремы будет такая теорема: «Из всех тел равного объема наименьшую поверхность имеет шар».
Изопериметрическое неравенство для объемных тел будет записано в следующем виде: 36pV2 / S3 ≤ 1, где V – объем тела, S – площадь полной поверхности тела.
Заметим, что эта стереометрическая изопериметрическая теорема позволяет ответить на вопрос: «Почему заварной чайник круглой формы остывает медленнее, чем чайник такого же объема, но другой формы?»
Читателю будет небезынтересно узнать своеобразную трактовку изопериметрической теоремы, которую приводит Д. Пойа в своей книге «Математика и правдоподобные рассуждения» (М.: Наука, 1975. С. 187): «К изопериметрической теореме нас могут привести совсем примитивные рассмотрения. Мы можем научиться ей у кота. Я думаю, вы видели, что делает кот, когда в холодную ночь он приготовляется ко сну: он поджимает лапы, свертывается и таким образом делает свое тело насколько возможно шарообразным. Он делает так, очевидно, чтобы сохранить тепло, сделать минимальным выделение тепла через поверхность своего тела. Кот, не имеющий ни малейшего намерения уменьшить свой объем, пытается уменьшить свою поверхность, делая себя возможно более шарообразным. Судя по всему, он имеет некоторое знакомство с изопериметрической теоремой».
Изложенная выше стереометрическая изопериметрическая теорема позволяет по новому, совсем с других позиций изучать тему «Тела вращения».
Известная формула для вычисления комфортности жилища: K = 36pV2 / S3 , где K – изопериметрический коэффициент комфортности, V – объем жилища, S – полная поверхность жилища, включая и пол. Учащимся можно предложить подсчитать коэффициент комфортности восточносибирского чума (рис. 1), яранги континентальных эскимосов Аляски (рис. 2), жилища береговых чукчей (рис. 3), жилища аборигенов Северной Австралии (рис. 4), жилища народов кирди в Камеруне (рис. 5), нашего обычного жилища в форме прямоугольного параллелепипеда (рис. 6).
Изопериметрический коэффициент K всегда меньше единице или равен ей. Единственное тело, имеющее коэффициент, равный единице, - это шар. Не потому ли неопознанные летающие объекты шарообразны (как утверждают те, кто их видел)?
П р и м е р 2. Принцип Кавальери для плоских фигур – принцип Кавальери для пространственных фигур.
Итальянский математик Бонавертура Кавальери (1598 – 1647) в своем основном труде «Геометрия» (1635) развил новый метод определения площадей и объемов – так называемый метод неделимых. Неделимыми он называл параллельные между собой хорды плоской фигуры или параллельные плоскости тела. Б. Кавальери доказал теорему, согласно которой площади двух подобных фигур относятся, как квадраты, а объемы – как кубы соответствующих неделимых. Эта теорема вошла в математику под названием принципа Кавальери. Приведем его формулировку.
Д л я п л о с к о с т и. Если две фигуры могут быть перемещены в такое положение, что всякая прямая, параллельная какой-нибудь данной прямой и пересекающая обе фигуры, дает в сечении с ними равные отрезки, то такие фигуры равновелики.
Примером могут служить два параллелограмма (рис. 7) с равными основаниями и равными высотами.
Д л я п р о с т р а н с т в а. Если две объемные фигуры могут быть помещены в такое положение, что всякая плоскость, параллельная какой-нибудь заданной плоскости и пересекающая обе фигуры, дает в сечении с ними плоские фигуры равной площади, то такие фигуры равновелики.
Примером могут служить две пирамиды с равными основаниями и равными высотами (рис. 8).
П р и м е р 3. Докажем для тетраэдра теорему, аналогичную теореме Пифагора для прямоугольного треугольника:
«Если три грани тетраэдра – прямоугольные треугольники (рис. 9), то S1 2 +S2 2 + S3 2 = S4 2 , где S1 , S2 , S3 – площади граней, составляющих прямой угол, S4 – площадь четвертой грани, лежащей против прямого трехгранного угла”.
Доказательство. Пусть длины катетов прямоугольных треугольников соответственно равны: у ∆АВД – а и b; у ∆АДС – а и d; у ∆АСВ – b и d, тогда
S1 = SАДВ = ½ аb; S2 = SАДС = ½ ad;
S3 = SАСВ = ½ bd. (1)
Для того чтобы найти S4 , найдем гипотенузу ∆АСВ: ВС = Öb2 + d2 . Высота основания, проведенная к гипотенузе ВС, равна
АМ = bd + d/Öb2 +d2 .
Высоту четвертой грани (∆ДВС) будем искать по теореме Пифагора:
ДМ = Öа2 + bd/b2 + d2 .
Тогда
S4 = ½/Öb2 +d2 * Öа2 + bd/b2 + d2 = ½/Öb2 +d2 * Ö а2 d2 + а2 b2 + b2 d2 /Öb2 +d2 = ½ Ö а2 d2 +а2 b2 + b2 d2 ;
S4 2 = ¼(а2 d2 + а2 b2 + b2 d2 ) (2)
Согласно равенствам (1), имеем:
S1 2 +S2 2 + S3 2 =¼ а2 d2 +¼а2 b2 +¼ b2 d2 = ¼(а2 d2 + а2 b2 + b2 d2 ).
Так как равые части последнего равенства и равенства (2) равны, то равны и левые части: