Реферат: Метод моментов в определении ширины линии магнитного резонанса
При наличии радиочастотного поля уравнение движения для r имеет вид
(4)
где V – объем образца. Чтобы решить (4) относительно r, сделаем подстановку
r* = ei H t r e – i H t , (5)
которая преобразует (4) в уравнение
. (6)
Предположим, что радиочастотное поле было включено в момент, когда образец находился в тепловом равновесии и
r (–¥) = r = r* (–¥).
В момент t решение (6) в линейном приближении относительно Н1 имеет вид
( 7)
Поэтому, возвращаясь к r [см. (5)], находим
(8)
Если предположить, что до включения радиочастотного доля намагниченность вдоль оси x была равна нулю, т. е.
Мх (–¥) = Sp {r0 M x } =0,
то
(9)
и, согласно определению (1 а),
(10)
Учтем, что температура обычно достаточно высока для того, чтобы для равновесной матрицы плотности (3) можно было использовать линейное разложение
где e – единичный оператор; тогда восприимчивость c²(w) становится равной
(11)
откуда, интегрируя по частям, получаем
(12)
Выражение (12) можно преобразовать к более компактной форме двумя способами.
В первом способе, вводя в рассмотрение оператор Гейзенберга
M x (t) = e i H t M x e – i H t , (12a)
можно переписать (12) в виде
(13)
где
G(t) = Sp{M x (t) M x }, (13a)
Функцию G(t) назовем функцией корреляции, или функцией релаксации намагниченности системы.
Во втором способе выражение (12) можно переписать в виде
Отсюда после применения хорошо известной формулы для d-функции
получаем
(14)
где суммирование S¢ производится только по тем энергетическим уровням, для которых | En — En' | = ħw. Обычно, вводя в рассмотрение вероятности переходов, выражение (14) используют как отправную точку для вывода (13) с помощью интегрального представления d-функции. Из равенства (14) в общем виде следует, что функция формы f (w), определяющая форму линии, пропорциональна сумме S¢ |< п | M x | n ’ >|2 . Точная зависимость этого выражения от co вытекает из условия, ограничивающего суммирование только по тем уровням, для которых | En — En' | = ħw. Формулы (13) и (14) являются весьма общими и справедливы в случае, когда спектр магнитного поглощения системы содержит одну или несколько острых резонансных линий, т. е. в случае ядерного магнитного резонанса. Математически это условие может быть сформулировано следующим образом.
Гамильтониан ħH системы представляет собой сумму главной части ħH0 и малой возмущающей части, которую удобно записать в виде ħeH1 , где e — параметр малости возмущения. В отсутствие H1 спектр поглощения системы состоит из одной или нескольких бесконечно острых линий c частотами wa , a восприимчивость c"(w) может быть записана в форме
c¢¢(w) = S Aa d(w-wa ); (15)
при этом функция релаксации G ( t ), пропорциональная фурье-преобразованию c¢¢(w), имеет вид
(15a)
Если существует возмущение ħeH1 , то функция релаксации принимает вид G(e, t) и может быть в принципе вычислена вплоть до любого порядка по e методом возмущений; восприимчивость c¢¢(w, e) получается как фурье-преобразование G(e, t).
Прежде чем производить детальный расчет, кратко рассмотрим соотношение между c¢¢(w) и поведением намагниченности после окончания действия радиочастотного импульса. Хорошо известно и достаточно очевидно, что для линейных систем стационарная реакция на возбуждение coswt представляется фурье-преобразованием нестационарной реакции на бесконечно острый импульс d(t). Однако на практике для аппроксимации такого импульса к системе спинов необходимо приложить кратковременно действующее магнитное поле, значительно большее постоянного поля Но .
Для системы взаимодействующих ядерных спинов в магнитном поле, характеризующейся острой резонансной линией на частоте w0 , действие бесконечно острого импульса постоянного поля можно аппроксимировать радиочастотным импульсом частоты w = w0 со значительно большей длительностью t и меньшей амплитудой H 1 . Поскольку в системе координат, вращающейся с частотой w, отлично от нуля только постоянное поле H 1 , то для аппроксимации бесконечно острого импульса конечной амплитуды достаточно того, чтобы H 1 было значительно больше локального поля; последнее представляет собой гораздо менее жесткое условие.
Б. УШИРЕНИЕ, ВЫЗВАННОЕ ВЗАИМОДЕЙСТВИЕМ
МЕЖДУ ОДИНАКОВЫМИ СПИНАМИ
§ 3. ДИПОЛЬ-ДИПОЛЬНОЕ ВЗАИМОДЕЙСТВИЕ