Реферат: Методика изучения числовых систем
Рис. 2.
???.1.
Рис. 3. Рис. 4
В результате такой работы у учащихся создается отчетливое представление о дроби как совокупности равных долей единицы, и сами учащиеся составляют соответствующее определение. Многие учебники сразу же рассматривают второй способ получения дроби при делении целого числа на равные части. На ряде конкретных примеров показывают, что при делении меньшего числа на большее получается в частном одна или несколько долей единицы, т.е., согласно ранее веденному определению, рассуждения ведутся Рис. 5. так.
????? ????????? ??????? ??????? ? 3 ? ?? 4 ?????? ?????, ????? ????????
Рис. 6.
представить каждый метр веревки разделенным на 4 равные части, тогда веревка будет содержать 12 четвертей метра, разделив 12 четвертей метра на 4 равные части, получим в каждой метра. Это рассуждение иллюстрируется рисунком 6.
Рассматривается второй способ рассуждений: чтобы делить 3 яблока (или 3 листа бумаги) 4 детям, можно каждое яблоко разделить на 4 равные части и каждому дать по одной четверти. Каждый ребенок получит яблока.
Основная мысль приведенных рассуждений та, что доли единицы можно взять за новые счетные единицы и с полученными числами производить действия так же, как, с целыми именованными числами. Но почему же начинать с деления? Деление определяется как действие, обратное умножению. Удовлетворяет ли рассмотренное деление этому определению? 3 : 4 = ; ·4 будет ли равно 3? Все это требует обоснования. Без этого учащиеся не будут связывать этот случай деления с определением деления.
После того как введено понятие дроби, необходимо ввести понятия равенства и неравенства дробей. В теоретических курсах эти понятия вводятся путем определений. В школьном курсе необходимо показать предварительно целесообразность вводимых определений путем рассмотрения конкретных примеров.
Составляя дроби из долей одной и той же единицы, учащиеся убеждаются, что дроби могут быть меньше единицы, равны единице, больше единицы. Эти наблюдения и следует положить в основу определений и классификации дробей на неправильные и правильные. Формальный же признак, указывающий на соотношение между числителем и знаменателем у правильных и неправильных дробей, следует установить, как следствие определения. Обращение смешанного числа в равную ему неправильную дробь и исключение целого числа из неправильной дроби следует начать с рассмотрения конкретных примеров. При составлении отрезков из долей линейной единицы, возникает вопрос: сколько целых линейных единиц содержится в данном отрезке? При составлении прямоугольников из долей квадратной единицы возникает вопрос: сколько квадратных единиц можно составить из данного прямоугольника? Решение этих вопросов приводит к исключению целого числа из неправильной дроби.
Не следует спешить с выводом формального правила для этих, преобразований, следует заставлять учащихся проводить соответствующие рассуждения, основанные на составе единицы из долей этой единицы. Например, при обращении смешанного числа 2 в неправильную дробь ведутся следующие рассуждения:в единице 3 третьих доли, в двух единицах 3· 2 третьих долей, всего (3·2+2).
Отсюда
В методической литературе поднимался вопрос о включении в школьный курс обращения смешанного числа в неправильную дробь и обратного преобразования после изучения деления дроби на целое число и деления дробей с одинаковыми знаменателями, так как при первом преобразовании производится умножение дроби на целое число и сложение дробей, при втором — деление дробей с одинаковыми знаменателями. Но принятое обычно расположение материала имеет преимущество: возможно рассматривать действия над всеми видами дробей и смешанными числами одновременно, причем эти преобразования не нарушают системы изучения действий, связаны с конкретными представлениями дробей и сводятся к действиям над целыми числами.
При рассмотрении различных долей единицы и дробей естественно поставить вопрос о сравнении их по величине, также кладется сравнение величин, измеряемых данными дробями. Для иллюстрации сравнительной величины долей единицы полезно на выбранной линейной единице от одного из ее концов отложить отрезки, соответствующие долям единицы (рис.7).
Рис.7
Для вывода формальных признаков сравнения дробей можно рекомендовать проводить работу по следующему плану: 1) сравнение долей единицы, 2) сравнение дробей с одинаковыми знаменателями, с одинаковыми числителями (не устанавливая, во сколько раз одна дробь больше другой), основное свойство дроби. Вывод основного свойства следует построить на том положении, что дроби, измеряющие одну и ту же величину при одной и той же единице измерения, равны. Таким образом, основное свойство получится как следствие определения равенства дробей, что соответствует научному построению изучения дробей. Следует при этом воспользоваться следующим наглядным пособием в виде таблицы:
Рис.8
Для вывода основного свойства дроби в ряде учебников и методик предлагается предварительно изучить изменение величины дроби с увеличением (или уменьшением) числителя или знаменателя в несколько раз, причем устанавливается, во сколько раз увеличивается или уменьшается при этом дробь. Выводится правило увеличения и уменьшения дроби в несколько раз, т. е. умножения и деления дроби на целое число. После этого рассматривается одновременно увеличение (или уменьшение) членов дробей водно и то же число раз и устанавливается основное свойство дроби.
Рассмотрение увеличения или уменьшения дроби в несколько раз следует увязывать с прохождением умножения и деления дроби на целое число, так как эти задачи тождественны. Если же этот вопрос рассматривать до действий, то необходимо показать, что, увеличивая дробь в несколько раз, мы ее умножаем на целое число, уменьшая - делим на целое число, но тогда нарушится систематичность изложения. Очень часто эта связь не подчеркивается, и учащиеся не осознают тождественность задач — увеличить дробь в несколько раз и умножить дробь на целое число, и не решаются применять правила увеличения и уменьшения дроби при умножении и делении дроби на целое число. Такое изучение увеличения и уменьшения дроби в несколько раз приносит вред учащимся, создавая путаницу в их умах.
После этого следует перейти к преобразованиям дробей: к сокращению дробей, затем к приведению дробей к общему знаменателю, связав это преобразование с задачей сравнения дробей с разными числителями и знаменателями.
Для сознательного усвоения преобразования дробей следует привести чертеж. Например, сокращение дроби можно показать следующим образом:
Рис.9
При этом ведутся следующие рассуждения: возьмем отрезок, составляющий линейной единицы; 8 восьмых долей единицы можно сгруппировать по 2 восьмых, тогда число долей, на которые разделена единица, уменьшится в 2 раза (8:2=4), 6 восьмых долей то же единицы тоже можно сгруппировать по 2 восьмых, тогда тело долей в данном отрезке тоже уменьшится в 2 раза (6:2=3);
отрезок, составленный из 6 восьмых линейной единицы, можно рассматривать составленным из 3 четвертей той же единицы.
Действия над дробями
Сложение и вычитание дробей
Изучение темы следует начать со сложения дробей с одинаковыми знаменателями и на конкретных примерах подчеркнуть, что сложение дробей состоит в подсчете одинаковых долей, содержащихся в данных дробях вместе, т. е. определение сложения дробей мало отличается от определения сложения чисел.
При сложении дробей с одинаковыми знаменателями следует составить систему упражнений, охватывающую все возможные случаи сложения: 1) целого с дробью; 2) целого со смешанным числом; 3) двух правильных дробей: а) дающих, в сумме правильную дробь, б) дающих в сумме целое число, в) дающих в сумме неправильную дробь; 4) смешанного числа с дробью, причем сумма дробей - правильная дробь; 5) то же, только сумма дробей - целое число;
6) то же, только сумма дробей — неправильная дробь; 7), 8), 9) те же случаи для суммы смешанных чисел. При сложении дробей с разными знаменателями в основу системы упражнений берутся различные случаи отыскания общего знаменателя. Следует вначале брать простые случаи отыскания общего знаменателя, которые не отвлекали бы от основной задачи — сложения дробей. На основании рассмотрения различных примеров следует добиться, чтобы учащиеся установили справедливость законов сложения для дробных чисел. Например:
Рассуждения, приведенные на частных примерах, имеют общий характер, а именно: сложение дробей с одинаковыми знаменателями сводится к сложению числителей, т. е. целых чисел; так как для целых чисел справедливы законы сложения, следовательно, они справедливы и для дробных чисел.
Вычитание дробей определяется, так же как и для целых чисел, как действие, обратное сложению.
Некоторые авторы предлагают проходить вычитание параллельно с сложением. Такой порядок имеет свои преимущества; этим самым все время подчеркивается связь вычитания с сложением как действия, обратного сложению. Большинство же учебников и задачников сначала рассматривают сложение дробей, потом вычитание, после этого — совместно сложение и вычитание, считая, что последний порядок изучения сосредоточивает внимание учащихся на одной трудности.
При вычитании дробей система упражнений имеет еще большее значение, чем при сложении, так как при вычитания иногда приходится уменьшаемое преобразовывать, что затрудняет учащихся. Постепенно усложняя упражнения, можно подготовить учащихся к усвоению трудных случаев вычитания. Рассмотрим различные случаи, которые могут быть положены в основу системы упражнений на вычитание дробей с одинаковыми знаменателями, а именно: 1) из дроби вычесть дробь; 2) из смешанного числа - дробь, которая меньше дроби смешанного числа; 3) из единицы - дробь; 4) из целого числа, большего единицы, - дробь; 5) из числа, равного единице с дробью, вычесть дробь, которая больше дроби в уменьшаемом; 6) из смешанного числа - смешанное, причем дробь вычитаемого меньше дроби уменьшаемого; 7) из целого - смешанное число; 8) из смешанного - смешанное число дробь которого больше дроби уменьшаемом. Примерная запись при сложении и вычитании дробей.
Не следует спешить переходить к записи общего знаменателя |вод одной чертой; учащиеся часто не осознают, что производится рамена данных дробей им равными дробями с общим знаменателем.
Умножение дроби на целое число