Реферат: Методика изучения числовых систем

При изучении умножения дроби на целое число необходимо установить с учащимися определение действия умножения дроби на целое число как сложения равных слагаемых, из которых каждое равно множимому; показать тождественность умножения дроби на целое увеличению дроби в несколько раз, дать определение умно­жения дроби на 1; показать рациональный прием сокращения дроби, числитель которой представляет произведение, с которым учащиеся встречаются впервые при умножении дроби на целое; научить применять это действие к задачам; рассмотреть частные случаи умножения, например, умножение дроби на число, равное знаменателю; умножение смешанного числа на целое число. Приведенный перечень задач, стоящих при изучении умножения дроби на целое число, показывает, что каждый вопрос, кажущийся простым, требует тщательного изучения и как много возникает дополнительных задач в связи с данным вопросом.

Приведем пример плана урока на эту тему,

1) Проверка домашнего задания.

2) Устные упражнения на сложение и вычитание дробей.

3) Устные примеры на деление произведения на число:

4) Сокращение дробей:

5) Повторение определения умножения на целое число:

6) Определение умножения дроби на целое число:

7) Решение задач в одно действие на умножение дроби на целое »»

число. Например: 1 м3 сосновых дров весит т. Найти вес 2м3 этих

дров (в тоннах), 7 м3 .

8) Сформулировать правило умножения дроби на целое число:

чтобы умножить дробь на целое число, достаточно числитель дроби умножить на это число, оставив прежний знаменатель.

9) Решение примеров на умножение дроби на целое число:

10) Составить задачи, при решении которых требовалось бы умножить.

11) Домашнее задание.

Приведенные в этом плане устные упражнения на деление про­изведения на число и сокращение дробей имеют цель подготовить учащихся к обоснованию сокращения дробей, в числителе которых стоит произведение. Учащиеся вспоминают, как разделить произве­дение на число и при сокращении дробей ведут следующие рассуждения: чтобы сократить дробь, надо числитель и знаменатель разделить на одно и то же число; в числителе стоит произведение; чтобы произведение разделить на число, достаточно один из мно­жителей разделить на это число. Поэтому при сокращении дроби делим 10 и 25 на 5.

На следующем уроке следует предложить учащимся на несколь­ких примерах умножения дроби на целое число сравнить множимое и произведение по величине. Установить, что для дробей, как и для целых чисел, увеличить дробь в несколько раз - значит умножить ее на целое число. На основании рассмотрения примеров вида

делается вывод об изменении величины дроби с увеличением чис­лителя или уменьшением знаменателя в данное число раз и дается частный прием умножения дроби на целое число, годный для слу­чая, когда знаменатель дроби делится на данное целое число:

При изучении умножения смешанного числа на целое вначале рассматриваются два способа. Например:

Последние рассуждения показывают справедливость распредели­тельного закона умножения относительно суммы, когда одно из слагаемых дробь. Рассматривается пример вида

и делается вывод, что при умножении смешанного числа на целое в большинстве случаев проще отдельно умножить целое и дробь на целое число.

Деление дроби на целое число

После умножения дроби на целое число следует перейти к делению целого числа и дроби на целое число, так как нахождение дроби числа, предшествующее умножению на дробь, требует деле­ния на знаменатель. На это указывается в большей части методической литературы. Определение действия деления дается как действия, обратного умножению.

Рассмотрим пример: 4 : 5.

Сначала проводятся рассуждения: чтобы разделить 4 на 5, представим мысленно каждую единицу разделенной на пять равных частей, тогда 4 единицы будут содержать 20 пятых частей, разделив 20 пятых частей на 5 получим ,что проверяется:

Мы нашли дробь, которая, будучи умноженной на 5, даст 4. Следовательно, деление произведено верно. Запишем:

Вывод. От деления целого числа на целое получается дробь, числитель которой равен делимому, а знаменатель — делителю. Об­ратно: всякую дробь можно считать за частное от деления ее чис­лителя на знаменатель.

Например, равно частному от деления 3 на 7, так как ·7=3.

Изучение деления дроби на целое число начинается с рассмотре­ния примера умножения дроби на целое число, для которого соста­вляется обратная задача. Например:

К-во Просмотров: 429
Бесплатно скачать Реферат: Методика изучения числовых систем