Реферат: Многомерный статистический анализ
В последнем девятом столбце табл.1 приведены квадраты значений из восьмого столбца. Их сумма - это остаточная сумма квадратов SS = 13,64. В соответствии со сказанным выше оценками дисперсии погрешностей и их среднего квадратического отклонения являются
Рассмотрим распределения оценок параметров. Оценка b* имеет асимптотически нормальное распределение с математическим ожиданием b и дисперсией, которая оценивается как 2,27/6=0,38 (здесь считаем, что 6 - "достаточно большое" число, что, конечно, можно оспаривать). Оценкой среднего квадратического отклонения является 0,615. Следовательно, при доверительной вероятности 0,95 доверительный интервал для параметра b имеет вид (26,83 - 1,96. 0,615; 26,83 + 1,96. 0,615) = (25,625; 28,035).
В формулах для дисперсий участвует величина
Подставив численные значения, получаем, что
Дисперсия для оценки а* коэффициента при линейном члене прогностической функции оценивается как 2,27/63,1=0,036, а среднее квадратическое отклонение - как 0,19. Следовательно, при доверительной вероятности 0,95 доверительный интервал для параметра а имеет вид (3,14 - 1,96. 0,19; 3,14 + 1,96, 0,19) = (2,77; 3,51).
Прогностическая формула с учетом погрешности имеет вид (при доверительной вероятности 0,95)
В этой записи сохранено происхождение различных составляющих. Упростим:
Например, при t = 12 эта формула дает
Следовательно, нижняя доверительная граница - это 44,095, а верхняя доверительная граница - это 49,325.
Насколько далеко можно прогнозировать? Обычный ответ таков - до тех пор, пока сохраняется тот стабильный комплекс условий, при котором справедлива рассматриваемая зависимость. Изобретатель метода наименьших квадратов Карл Гаусс исходил из задачи восстановления орбиты астероида (малой планеты) Церера. Движение подобных небесных тел может быть рассчитано на сотни лет. А вот параметры комет (например, срок возвращения) не поддаются столь точному расчету, поскольку за время пребывания в окрестности Солнца сильно меняется масса кометы. В социально-экономической области горизонты надежного прогнозирования еще менее определены. В частности, они сильно зависят от решений центральной власти.
Чтобы выявить роль погрешностей в прогностической формуле, рассмотрим формальный предельный переход Тогда слагаемые 9,03; 1/6; 5,67 становятся бесконечно малыми, и
Таким образом, погрешности составляют около
от тренда (математического ожидания) прогностической функции. В социально-экономических исследованиях подобные погрешности считаются вполне приемлемыми.
Основы линейного регрессионного анализа
В предыдущем пункте метод наименьших квадратов описан в простейшем случае. Он допускает различные обобщения. Например, метод наименьших квадратов дает алгоритм расчетов в случае, если исходные данные – по-прежнему набор n пар чисел (tk , xk ), k = 1,2,…,n, где tk – независимая переменная (например, время), а xk – зависимая (например, индекс инфляции - см. главу 7), а восстанавливать надо не линейную зависимость, а квадратическую:
Следует рассмотреть функцию трех переменных
Оценки метода наименьших квадратов - это такие значения параметров a*, b* и с*, при которых функция f(a,b,с) достигает минимума по всем значениям аргументов. Чтобы найти эти оценки, надо вычислить частные производные от функции f(a,b,с) по аргументам a, b и с, приравнять их 0, затем из полученных уравнений найти оценки: Имеем:
Приравнивая частную производную к 0, получаем линейное уравнение относительно трех неизвестных параметров a,b,c: