Реферат: Модель Кронинга-Пенни. Структура энергетических зон

заштрихованные участки определяют область разрешенных энергий электрона – энергетические зоны.

Эти зоны отделены друг от друга полосами запрещенных энергии - запрещенными зонами. Им отвечают области значений , в которых, в которых должна была бы быть больше +I или меньше -I, что запрещено выражением .

С увеличением энергии электрона ширина разрешенных зон увеличивается, а ширина запрещенных зон уменьшается.

Ширина зон зависит также от параметра Р. При разрешенные зоны сужаются, превращаясь в дискретные уровни, соответствующие где т.е. к значениям, соответствующим изолированной потенциальной яме. При , наоборот, исчезают запрещенные зоны и электрон становится свободным.

Выразим Е с помощью

Рассмотрим зависимость энергии электрона от волнового вектора . Штрихпунктирная линия изображает зависимость Е() для свободного электрона.

Внутри каждой зоны энергии электрона непрерывно растет с ростом волнового вектора. При значениях: энергия претерпевает разрыв, приводящий к образованию запрещенных зон.

Мы получим формулу Вульфа-Бреггa, выражающую условие отражения волн от плоской решетки для случая, когда угол падения равен 90°. Разрывы в энергетическом спектре электрона в кристалле происходят при выполнении условия Брегговского отражения электронных волн от плоскости решетки. Электроны с такой длиной волны претерпевают в кристалле полное внутреннее отражение и распространяться в кристалле не могут.

Пусть на решетку действуют лучи с длиной волны λ. Лучи, отраженные от атомных плоскостей, интерферируют между собой и

усиливают или ослабляют друг друга.

Усиление происходит в том случае, если разность хода лучей отраженных от сосед­них атомных плоскостей, будет целократна длине волны. Разности хода лучей

Поэтому условие усиления запишется:

Лучи падающие на атомные плоскости под углом, удовлетворяющим этому условию, полностью отражаются и через решетку пройти не могут. При мы получаем:

В случае связанного электрона при значениях волнового вектора кратных π /a энергия терпит разрыв. С увеличением силы связи электро­на высота разрывов становится больше.


Зоны Бриллюэна.

При изменении волнового вектора отО до ± 2(π /a), энергия растет при k = π /a непрерывно, она претерпевает первый разрыв. При дальнейшем увеличении k энергия снова растет непрерывно, пока при k = ±2(π /a) не испытает второго разрыва и т.д.

Области значений k , в пределах которых энергия электрона изменяется непрерывно, а на границах претерпевает разрыв, называются зонами Бриллюэна.

Зона I для линейной модели кристалла простирается от - π /a до +π /a, зона II - от -2(π /a) до -π /a и от +π /a до +2(π /a) и имеет протяженность равную 2(π /a). Все зоны Бриллюэна имеют одну и туже протяженность равную 2(π /a).

Понятие зон Бриллюэна распространяется и на случай двух- и трехмерных решеток. В пределах каждой зоны энергия электрона изменяется непрерывно с изменением волнового вектора, на границах зон она претерпевает разрыв. Утверждения о равенстве всех зон Бриллюэна справедливо для двух- и трехмерных случаев.

Теперь об обратной решетке. Всякой пространственной решетке может быть противопоставлена обратная решетка. Обратная решетка обладает теми же геометрическими свойствами, что и прямая. В основе обратной решетки лежит элеметарная ячейка, образуемая тремя независимыми базисными векторами b1; b2 .

Параллельным переносом элементарной ячейки (трансляцией) можно получить всю обратную решетку. Все узлы обратной решетки могут быть описаны вектором:

Базисные векторы обратной решетки (или постоянные обратной решетки) связаны с постоянными прямой решетки следующими соотношениями в виде векторных произведений:

Из приведенных выражений видно, что вектор b перпендикулярен как a2 так и a3. Численные значения базисных векторов обратной решетки равны:

b1 = 2π /a1 ; b2 = 2π /a2 ; b3= 2π /a3

Каждому виду элементарной ячейки в прямой решетке соответствует определенный вид элементарной ячейки в обратной решетке. Так, простой кубической ячейке соответствует также простая кубическая ячейка обратной решетки с ребрами 2π /a (см. рис.)

Более сложную обратную решётку имеют гранецентрированная кубическая решётка и решётка типа алмаза (см. рис.).

Зона Бриллюэна трёхмерного кристалла совпадает с его обратной решёткой. В кристалле в с простой прямоугольной решёткой энергия электрона является периодической функцией k с периодами 2π/а1 , 2π/а2 , 2π/а3 по соответствующим осям решётки (см. рис.). Таким образом, пространство обратной решётки представляет собой пространство волнового вектора.

К-во Просмотров: 398
Бесплатно скачать Реферат: Модель Кронинга-Пенни. Структура энергетических зон