Реферат: Модель Кронинга-Пенни. Структура энергетических зон

Функция распределения Ферми-Диракса при нулевой и ненулевой температуре.

-между энергией Ферми и химическим потенциалом существует очень маленькое различие.


Поверхности с последовательно возрастающими значениями энергии в первой зоне Бриллюэна (Поверхность Ферми)

Волновые функции электронов проводимости должны быть ортогональны функциям состояний остова атома. (Принцип Паули… в противном случае состояния проводимости начнут заполнять занятые состояния остова атома… см. Блоха)

Если в (1) V(r)=0 то решением (1) будет : (1).

Собственные значения энергии будут (2). Поэтому все энергетические поверхности в k-пространстве являются сферами. Поверхность Ферми: (3).

(4).

В k–пространстве интервал энергии соответствует сферической оболочке . Плотность состояний в k–пространстве и с учетом принципа Паули:, а в объеме :

(5)

Учитывая равенство после подстановки (2) в (5) получаем: (6)

Если умножить плотность состояний (6) на вероятность занятости уровней (функция Ферми-Диракса) при Т=0 и проинтегрировать вплоть до энергии Ферми , то в результате получим число электронов в зоне проводимости на единицу объема. Таким образом можно выразить энергию Ферми следующим образом : (7)

Удобно выразить скорость на поверхности Ферми через число валентных электронов, и испрользуя (3), (4) и (7), в результате получим:

(8)

Металлы, полупроводники, диэлектрики

Атомы газов могут рассматриваться как, изолированные, так как они находятся на сравнительно больших расстояниях друг от друга. При атмосферном давлении и комнатных температурах эти рассеяния примерно в 100 раз превышают диаметр атома и атомы практически не взаимодействуют друг с другом.

Однако оптические спектры газовых молекул, состоя­щих из двух или более плотно упакованных атомов, содержат большее число линий, чем спектры простых атомов, так как взаимодействие атомов в молекуле приводит к значительному увеличению числа энергетических уровней.

При газовом разряде, происходящем при высоком давлении (например, в ртутных лампах высокого дав­ления), вследствие такого рода обменного взаимодействия возникает практически непрерывный спектр излуче­ния. По этой же причине можно ожидать, что спектр твердых тел будет содержать большое число линий, так как в твердом теле отдельные атомы отстоят друг от дру­га в кристаллической решетке на расстоянии, равном всего нескольким диаметрам атома. Это же является причиной сильной электрической связи между атомами твердого тела.

В атомах металлов, обладающих от одного до трех валентных электронов, сила притяжения этих электронов к собственному ядру атома из-за малых расстояний между атомами в твердом теле практически скомпенси­рована кулоновскими силами взаимодействия между ва­лентными электронами соседних атомов. Связь валент­ных электронов с ядром слабее в атомах с незаполнен­ной валентной оболочкой по сравнению с атомами, внешняя (валентная) оболочка которых целиком запол­нена. Вследствие этого степень компенсации силы при­тяжения электронов к ядру в решетке металла больше, чем в решетке полупроводника или диэлектрика, атомы которых обладают четырьмя и более валентными элек­тронами. В полупроводниках и диэлектриках силы при­тяжения между ядром и валентными электронами на­столько велики, что проводимость тела при комнатных температурах либо почти полностью отсутствует (у ди­электриков), либо оказывается очень незначительной (у полупроводников).

Благодаря частичной (у диэлектриков и полупроводников) или почти полной (у металлов) компенсации сил притяжения между валентными электронами и ядром атома, а также из-за ослабления связи остальных элек­тронов в твердом теле энергетические уровни электронов преобразуются в энергетические зоны.

Вместо модели энергетических уровней электронов изолированных атомов в случае твердого тела пользуются так называемой моделью энергетических зон, кото­рую следует рассматривать как развитие энергетической модели атомов с дискретными энергетическими уровня­ми. Основному уровню в схеме свободного (изолирован­ного) атома соответствует в случае твердого тела сред­ний потенциал решетки, который идентифицируется с верхней границей валентной зоны твердого тела.

Если в результате сообщения твердому телу некото­рой энергии электрон отделяется от «своего» атома, он может квазисвободно перемещаться по кристаллу в пе­риодическом потенциальном поле атомов (или ионов) решетки. В зонной модели этому процессу соответствует переход электрона из валентной зоны в вышележащую зону проводимости. Минимальная энергия, необходимая для такого перехода, имеет разное значение для различных классов твердых тел (рис. 19).

Металлы. Проводимость металлов обусловлена тем, что валентные электроны благодаря слабой связи с яд­ром могут быть легко отделены от атома. Тепловой энергии электрона при комнатной температуре уже до­статочно, чтобы практически все атомы металла оказались ионизированными. В этом случае говорят об «элек­тронном газе» электронов, квазисвободно передвигаю­щихся в решетке металла. Незначительная величина энергии ионизации металлических атомов отражена в зонной модели в том, что зона проводимости граничит с валентной зоной или даже перекрывается с ней.

Наряду с переходом электронов из валентной зоны в зону проводимости отдельные атомы могут обмени­ваться электронами внутри валентной зоны (без изме­нения энергии).

К-во Просмотров: 402
Бесплатно скачать Реферат: Модель Кронинга-Пенни. Структура энергетических зон