Реферат: Модели системы кровообращения
где a и b - константы. Объем крови Vi =Vi (t) для i-го участка системы задается уравнением баланса
Здесь Qi - алгебраическая сумма по j объемных скоростей кровообмена qij между i-м участком и всеми остальными, причем qij ≡0, если j-ый участок непосредственно не сообщается с i-ым. В противном случае принимается, что
где Pi - суммарное давление крови на i-ом участке,
Ri - сопротивление кровотоку на этом участке.
В модели учитывается, что в некоторых периферических венах при падении давления сечение приобретает эллиптическую форму. Для этих сосудов принималось:
А для сосудов верхней половины тела:
Здесь - сопротивление сосуда в условиях, когда его объем равен Ui- ненапряженному объему;
- сопротивление сосуда при горизонтальном положении тела, когда объем сосуда равен .
Зависимость трансмурального давления (давления, обусловленного упругостью сосудистой стенки) от рассматриваемых переменных имеет вид:
где - объемная податливость сосудов соответственно в области отрицательного, низкого положительного и высоко положительного давлений;
- параметр аппроксимации.
Суммарное давление в i-ом сосуде равно:
Здесь - гидростатическое давление, пропорциональное величине действующей перегрузки и отсчитываемое от выбранного нулевого уровня (обычно от уровня нижней точки тела или уровня сердца);
- давление в тканях, окружающих i-ый участок сосудистого русла:
причем - избыточное давление на поверхности тела в зоне i-го элемента модели;
- внесосудистое давление в тканях в условиях физиологической нормы
ŋ - коэффициент передачи давления, ŋ ≤1.
Эти уравнения полностью описывают биомеханическую модель кровообращения в условиях измененной весомости и перепадов давления по телу. Для учета физиологических компенсаторных реакций в модель дополнительно вводится контур автоматического регулирования давлений крови в зонах аорты и каротидных синусов. В качестве регулируемых параметров приняты частота и сила сердечных сокращений, а также сопротивление, податливость и ненапряженный объем участков сосудистого русла. Отклонение давлений в контролируемых зонах от исходных "нормальных" значений (давления в покое в позе "лежа") приводит к включению схемы пропорционального регулирования вышеперечисленных параметров, причем для каждого из них справедливо уравнение
где Δα - отклонение регулируемого параметра от исходного значения
kα - коэффициент усиления;