Реферат: Моделирование работы банка
В приложениях стохастическое программирование используется для решения задач двух типов. В задачах первого типа прогнозируются статистические характеристики поведения множества идентичных экстремальных систем. Соответствующий раздел стохастического программирования будем называть пассивным стохастическим программированием. Модели второго типа предназначены для построения методов и алгоритмов планирования и управления в условиях неполной информации. Соответствующий раздел стохастического программирования будем называть активным стохастическим программированием, подчеркивая этим действенную целевую направленность моделей.
Подходы к постановке и анализу стохастических экстремальных задач существенно различаются в зависимости от того, получена ли информация о параметрах условий задачи (пли об их статистических характеристиках) в один прием или по частям (в два или более этапов). При построении стохастической модели важно также знать, необходимо ли единственное решение, не подлежащее корректировке, или можно по мере накопления информации один или несколько раз подправлять решение. Другими словами, речь идет о том, какая задача рассматривается: статическая или динамическая. В соответствии с этим в стохастическом программировании исследуются одноэтапные, двухэтапные и многоэтапные задачи.
Статические, или одноэтапные, задачи стохастического программирования представляют собой естественные стохастические аналоги детерминированных экстремальных задач, в которых динамика поступления исходной информации не играет роли, а решение принимается один раз и не корректируется. Одноэтапные стохастические задачи, как те, что порождены детерминированными моделями стохастического программирования, так и те, что имеют смысл только при случайных параметрах условий, различаются характером ограничений и выбором целевой функции.
Разработка предварительного плана и компенсация невязок—два этапа решения одной задачи. В соответствии с этим задачи рассматриваемого типа называют двухэтапными задачами стохастического программирования.
Естественным обобщением двухэтапных задач являются многоэтапные (динамические) задачи стохастического программирования. Часто в процессе управления представляется возможность последовательно наблюдать ряд реализаций параметров условий и соответствующим образом корректировать план. Естественно, что как предварительный план, так и последовательные корректировки должны, помимо содержательных ограничений, учитывать априорные статистические характеристики случайных параметров условий на каждом этапе.
К анализу многоэтапных задач стохастического программирования сводятся формальные исследования численных методов планирования производства и развития экономической системы.
Роль стохастических моделей и методов в исследовании закономерностей поведения экономических систем и в разработке количественных методов планирования экономики и управления производством имеет два аспекта — методологический и вычислительный. И тот и другой связаны с одной из важнейших категорий современной математической логики — с понятием сложности, точнее, с понятиями «сложность алгоритма», «сложность вычислений» и «сложность развития».
Роль вычислительного аспекта проблемы определяется тем, что планирование, управление и проектирование происходят, как правило, в условиях неполной информации. Рыночная конъюнктура, спрос на продукцию, изменения в состоянии оборудования не могут быть точно предсказаны. В условиях конкурентной экономики дополнительно возникает направленная дезинформация.
Учет случайных факторов и неопределенности в планировании и управлении — важная задача стохастического программирования.
Однако этим не исчерпывается роль стохастических методов в экономическом анализе. Принципы стохастического программирования дают основание для сопоставления затрат на накопление и хранение информации с достигаемым экономическим эффектом, позволяют аргументировать рациональное разделение задач между человеком и вычислительной машиной и служат теоретическим фундаментом для алгоритмизации управления сложными системами. Принципы стохастического программирования позволяют сблизить точные, но узко направленные формальные математические методы с широкими, но нечеткими содержательными эвристическими методами анализа. И здесь, таким образом, мы переходим к методологической роли стохастического программирования в исследовании сложных систем.
В связи с оценками сложности алгоритмов и вычислений представляет смысл условно разделить задачи планирования, управления и проектирования на задачи вычислительного и не вычислительного характера.
Многие задачи управления, должны быть отнесены к классу задач не вычислительного характера. Т.о. необходимо согласование сложности управляемого объекта и управляющего устройства за счет рационального упрощения объекта (разумной переформулировки задачи).
2.3.Формальная постановка стохастической задачи.
Приведем формальную постановку многоэтапной стохастической задачи. Пусть i—набор случайных параметров i-го этапа, a xi —решение, принимаемое на i-м этапе. Обозначим k =(1 , … , k) , xk = (x1 , … ,xn) ,
k = 1,…,n .
Общая модель многоэтапной задачи стохастического программирования имеет вид:
Mn 0 ( n , xn ) min, (4.1)
M k k ( k , xk ) k-1 bk (k-1) , (4.2)
xkGk ,k=1,…,n. (4.3)
Здесь 0 (n , xn) —случайная функция от решений всех этапов,
k (k , xk) -случайная вектор-функция, определяющая ограничения k-го этапа; bk (k-1) —случайный вектор; Gk —некоторое множество, определяющее жесткие ограничения k-го этапа; M k k k-1 —условное математическое ожидание k в предположении, что на этапах, предшествующих k-му, реализован набор
k-1 =(1 , … , k-1).
Предполагается, что совместное распределение вероятностей всех случайных параметров условий задано (или, по крайней мере, известно, что оно существует).
Для того чтобы постановка задачи (4.1)—(4.3) была полной, необходимо еще указать, среди какого класса функций (решающих правил x=x() Х) от реализаций случайных исходных данных следует разыскивать решение.
К моменту, когда должно быть принято решение k-то этапа, можно успеть обработать результаты наблюдения реализаций случая на этапах 1, ..., s; sk.
В задачах решение на 1-м этапе принимается после реализации случайных параметров условий на предыдущем (i—1)-м этапе. Решающие правила имеют вид xi=xi (i-1 ) , i = 1,…,n .
Будем называть такие задачи многоэтапными задачами стохастического программирования с условными ограничениями и с априорными решающими правилами.
Сведение задачи управления к анализу модели стохастического программирования позволяет разделить процесс выбора решения на два этапа. Первый—трудоемкий предварительный — использует структуру задачи и априорную статистическую информацию для получения решающего правила (или решающего распределения) —формулы, таблицы или инструкции, устанавливающей зависимость решения (или функции распределения оптимального плана) от конкретных значений параметров условий задачи. Второй — нетрудоемкий оперативный этап — использует решающее правило (решающее распределение) и текущую реализацию условий для вычисления оптимального плана (или его распределения).[10]
2.4.Методы решения задач стохастического программирования.