Реферат: Моделювання на ЕОМ випадкових величин і випадкових процесів
, (13)
де - деякі коефіцієнти, причому , а - щільності розподілу ВВ, для яких досить просто виконати моделювання на ЕОМ.
В основі моделювання лежить такий математичний апарат. Нехай існують ВВ і незалежні між собою і задані на тому самому імовірнісному просторі . Нехай - це функція розподілу ВВ і - це умовна щільність ймовірності ВВ за умови, що ВВ прийняла якесь значення
. (14)
Тоді безумовна щільність ймовірності ВВ
. (15)
Припустимо, що - це ВВ, яка приймає дискретні значення з імовірностями
. (16)
У цьому випадку , отже приходимо до раніше наведеної суміші розподілу. У ролі щільностей ймовірності найпростішого типу можуть виступати: гаусові, прямокутні, трикутні розподіли.
На рис.6 для прикладу показано, як за допомогою гаусових розподілів апроксимується щільність розподілу складнішого виду
(17)
Рисунок 6 - Апроксимація складної щільності ймовірності за допомогою гаусових розподілів
Таким чином, алгоритм моделювання ВВ методом суперпозиції містить у собі такі етапи:
вибір вигляду найпростішої щільності розподілу, за допомогою якої апроксимується задана щільність ймовірності;
моделюється реалізація ВВ, яка приймає дискретні значення з заданими імовірностями ;
для отриманого значення i моделюються реалізація ВВ з - тою щільністю ймовірності;
з нову моделюється реалізація ВВ, яка приймає дискретні значення ;
потім виконується процес моделювання реалізації ВВ із новим номером щільності ймовірності;
зазначені етапи моделювання повторюються доти, доки не буде отримана вибірка реалізацій ВВ необхідного обсягу.
Моделювання гаусових випадкових величин методом сумації
Введемо стандартну гаусову ВВ із нульовим математичним сподіванням і одиничною дисперсією
, (18)
де - символ гаусової щільності ймовірності.
У математичній статистиці доведено, що сумма значного числа незалежних між собою і рівномірно розподілених ВВ має гаусовий закон розподілу. Тому стандартну гаусову ВВ можна моделювати відповідно до виразу:
, (19)
де - незалежні між собою БВВ.
У загальному випадку довільних гаусову ВВ можна записати як
, (20)
де - це необхідні математичне сподівання і дисперсія ВВ.