Реферат: Неопределенные бинарные квадратичные формы

Последняя сумма геометрически представляет собой число целых точек в первой четверти, лежащих на или под гиперболой , при этом целые точки, лежащие на осях координат, исключаются, так как для них . Поэтому исследуемую сумму можно записать в виде:

, где — целая часть числа

Оцениваем теперь сумму:

,

где

Здесь мы воспользовались следующим соотношением из математического анализа

,

где

есть так называемая постоянная Эйлера.

Предложение 5 доказано.

Перейдем теперь к элементарному доказательству следующего результата.

Теорема (Зигель). Для числа всех приведенных неопределенных бинарных квадратичных форм дискриминанта справедливо неравенство

,

где — произвольное положительное число, — постоянная, зависящая только от .

Доказательство. Пусть — неопределенная приведенная форма дискриминанта . Тогда ,

,

Оценим сверху число приведенных форм с и . Тогда

Применяя к последней сумме предложения 3,4,5, получим:

, где

Теорема доказана.

О диагональных формах и оценка снизу числа классов в роде

В этом параграфе мы получим одну оценку снизу для числа классов в роде неопределенных бинарных квадратичных форм. Сначала введем соответствующие понятия.

К-во Просмотров: 304
Бесплатно скачать Реферат: Неопределенные бинарные квадратичные формы