Реферат: Неопределенный интеграл
Теорема 1.Неопределенный интеграл от алгебраической суммы двух или нескольких функций равен алгебраической сумме их интегралов:
(1)
Из доказательства найдем производные от левой и правой частей этого равенства. На основании равенства (4) пункта №1 находим
Таким образом, производные от левой и правой частей равенства (1) равны между собой, т. е. производная от любой первообразной, стоящая в левой части, равняется производной от любой функции, стоящей в правой части равенства. Следовательно по теореме из пункта №1 любая функция, стоящая в левой части равенства (1), отличается от любой функции, стоящей в правой части равенства(1), на постоянное слагаемое. В этом смысле и нужно понимать равенство (1).
Теорема 2. Постоянный множитель можно выносить за знак интеграла, т. е. если a=const, то
(2)
Для доказательства равенства (2) найдем производные от левой и правой его частей:
Производные от правой и левой частей равны, следовательно, как и в равенстве (1), разность двух любых функций, стоящих слева и справа, есть постоянная. В этом смысле и следует понимать равенство (2).
При вычислении неопределенных интегралов бывает полезно иметь в виду следующие правила.
1).Если
то
(3)
Действительно, дифференцируя левую и правую части равенства (3) получим
Производные от правой и левой частей равны, что и требовалось доказать.
2). Если
то
(4)
3. Если
то
. (5)
Равенства (4) и (5) доказываются дифференцированием правой и левой частей равенств.
Пример 1.
=