Реферат: Непрерывное Вейвлет-преобразование

· построить модель идеальной ЭКГ

· провести сравнительный анализ эффективности системы Matlab и разработанного модуля

· проанализировать временные затраты с учетом параметров съема ЭКГ и аппаратного обеспечения

При проведении исследований использовать систему Matlab 5.0, для разработки модуля использовать среду программирования Delphi 5.0.

3. ПОДХОДЫ К АНАЛИЗУ НЕСТАЦИОНАРНЫХ СИГНАЛОВ

3.1. Методы обработки нестационарных сигналов

Большинство медицинских сигналов имеет сложные частотно-временные характеристики. Как правило, такие сигналы состоят из близких по времени, короткоживущих высокочастотных компонент и долговременных, близких по частоте низкочастотных компонент.

Для анализа таких сигналов нужен метод, способный обеспечить хорошее разрешение и по частоте, и по времени. Первое требуется для локализации низкочастотных составляющих, второе – для разрешения компонент высокой частоты.

Вейвлет преобразование стремительно завоевывает популярность в столь разных областях, как телекоммуникации, компьютерная графика, биология, астрофизика и медицина. Благодаря хорошей приспособленности к анализу нестационарных сигналов оно стало мощной альтернативой преобразованию Фурье в ряде медицинских приложений. Так как многие медицинские сигналы нестационарны, методы вейвлет анализа используются для распознавания и обнаружения ключевых диагностических признаков.

Преобразование Фурье представляет сигнал, заданный во временной области, в виде разложения по ортогональным базисным функциям (синусам и косинусам), выделяя таким образом частотные компоненты. Недостаток преобразования Фурье заключается в том, что частотные компоненты не могут быть локализованы во времени, что накладывает ограничения на применимость данного метода к ряду задач (например, в случае изучения динамики изменения частотных параметров сигнала на временном интервале).

Существует два подхода к анализу нестационарных сигналов такого типа. Первый – локальное преобразование Фурье (short-time Fourier transform). Следуя по этому пути, мы работаем с нестационарным сигналом, как со стационарным, предварительно разбив его на сегменты (окна), статистика которых не меняется со временем. Второй подход – вейвлет преобразование. В этом случае нестационарный сигнал анализируется путем разложения по базисным функциям, полученным из некоторого прототипа путем сжатий, растяжений и сдвигов. Функция прототип называется материнским, или анализирующим вейвлетом.

3 . 2 Краткий обзор преобразования Фурье

Классическим методом частотного анализа сигналов является преобразование Фурье, суть которого можно выразить формулой (1)


Результат преобразования Фурье – амплитудно-частотный спектр, по которому можно определить присутствие некоторой частоты в исследуемом сигнале.

В случае, когда не встает вопрос о локализации временного положения частот, метод Фурье дает хорошие результаты. Но при необходимости определить временной интервал присутствия частоты приходится применять другие методы.

Одним из таких методов является обобщенный метод Фурье (локальное преобразование Фурье). Этот метод состоит из следующих этапов:

1. в исследуемой функции создается “окно” – временной интервал, для которого функция f(x)¹0, и f(x)=0 для остальных значений;

2. для этого “окна” вычисляется преобразование Фурье

3. “ окно” сдвигается, и для него также вычисляется преобразование Фурье

“Пройдя” таким “окном” вдоль всего сигнала, получается некоторая трехмерная функция, зависящая от положения “окна” и частоты.

Данный подход позволяет определить факт присутствия в сигнале любой частоты, и интервал ее присутствия. Это значительно расширяет возможности метода по сравнению с классическим преобразованием Фурье, но существуют и определенные недостатки. Согласно следствиям принципа неопределенности Гейзенберга в данном случае нельзя утверждать факт наличия частоты w0 в сигнале в момент времени t0 - можно лишь определить, что спектр частот (w1 ,w2 )присутствует в интервале (t1 ,t2 ). Причем разрешение по частоте (по времени) остается постоянным вне зависимости от области частот (времен), в которых производится исследование. Поэтому, если, например, в сигнале существенна только высокочастотная составляющая, то увеличить разрешение можно только изменив параметры метода. В качестве метода, не обладающего подобного рода недостатками, был предложен аппарат вейвлет анализа. [2]

3 .3 Основные положения вейвлет-анализа

Различают дискретный и непрерывный вейвлет анализ, аппарат которых можно применять как для непрерывных, так и для дискретных сигналов.

Cигнал анализируется путем разложения по базисным функциям, полученным из некоторого прототипа путем сжатий, растяжений и сдвигов (2). Функция-прототип называется анализирующим (материнским) вейвлетом.

Вейвлет - функция должна удовлетворять 2-м условиям:

1. Среднее значение (интеграл по всей прямой) равен 0.

2. Функция быстро убывает при t ® ∞.

Обычно, функция-вейвлет обозначается буквой ψ.

В общем случае вейвлет преобразование функции f(t) выглядит так:

(2)

где t – ось времени, x – момент времени, s –параметр, обратный частоте, a (*) – означает комплексно-сопряженное.


??????? ????????? ? ??????? ??????? ???????? ???????-???????. ?????? ??????, ????????? ???????? ????? ???????, ?????????? ???? ????????????? ????????. ?????????? ????????????? ?????????? ??? ???????????? ?? ??????? 1 ????????:

Рис 1. Примеры вейвлетов.

Сверху изображен вейвлет “сомбреро” (Mexican Hat), названный так благодаря своему внешнему виду. На нижней части рисунка 1 изображен вейвлет Морле. График любого вейвлета выглядит примерно также, как и вейвлет Морле. Заметим, что вейвлет Морле – комплекснозначный, на рисунке изображены его вещественная и мнимая составляющие.

Итак, у нас имеется некоторая функция f(t), зависящая от времени. Результатом ее вейвлет-анализа будет некоторая функция W(x,s), которая зависит уже от двух переменных: от времени и от частоты (обратно пропорционально). Для каждой пары x и s рецепт вычисления вейвлет преобразования следующий:

1. Функция вейвлет растягивается в s раз по горизонтали и в 1/s раз по вертикали.

К-во Просмотров: 274
Бесплатно скачать Реферат: Непрерывное Вейвлет-преобразование