Реферат: Неравенства

1) Основное понятие неравенства

2) Основные свойства числовых неравенств. Неравенства содержащие переменную.

3) Графическое решение неравенств второй степени

4) Системы неравенств. Неравенства и системы неравенств с двумя переменными.

5) Решение рациональных неравенств методом интервалов

6) Решение неравенств, содержащих переменную под знаком модуля

1. Основное понятие неравенства

Неравенство [inequality] — соотношение между числами (или любыми математическими выражениями, способными принимать численное значение), указывающее, какое из них больше или меньше другого. Над этими выражениями можно по определенным правилам производить следующие действия: сложение, вычитание, умножение и деление (причем при умножении или делении Н. на отрицательное число смысл его меняется на противоположный). Одно из основных понятий линейного программированиялинейные неравенства вида

a 1 x 1 + a 2 x 2 +... + an xn * b ,

где a 1 ,..., an , b — постоянные и знак * — один из знаков неравенства, напр. ≥, <, ≤.

В матричной алгебре знак ≥ означает что все элементы матрицы , расположенной слева, не меньше (а хотя бы часть из них больше) соответствующих элементов матрицы, расположенной справа. В отличие от этого знак ≤ означает, что все элементы левой матрицы не меньше соответствующих элементов правой матрицы; в частности, все соответствующие элементы могут быть попарно равны. (Иногда применяются и другие обозначения.)

Классификация неравенств

Неравенства, содержащие неизвестные величины, подразделяются на:[1]

· алгебраические

· трансцендентные

Алгебраические неравенства подразделяются на неравенства первой, второй, и т. д. степени.

Пример:

Неравенство - алгебраическое, второй степени.

Неравенство - трансцендентное.

2. Основные свойства числовых неравенств . Неравенства содержащие переменную

1) Если a>b , b<a;

2) Если a>b b>c a>c;

3) Если a>b a+c>b+c;

4) Если a+b>c a> c-b;

5) Если обе части верного неравенства умножить на одно и то же положительное число, то получится верное неравенство;

6) Если обе части верного неравенства умножить на одно и то же число и изменить знак на противоположный, то получится верное неравенство;

7) Множество всех х, при которых имеют смысл выражения f(x) и g(x), называется областью определения неравенства f(x) >g(x);

8) Два неравенства, содержащие одну и ту же переменную, называются равносильными, если они имеют общее множество решений (множество решений этих неравенств совпадают);

9) Если к обеим частям неравенства прибавить(или вычесть) любую функцию J(x). область определения которой содержит область определения неравенств, то получится новое неравенств, равносильное данному;

10) Если обе части неравенства f(x) >g(x) умножить (или разделить) на любую функцию J(x), определенную для всех значений переменной х из области определения данного неравенства, сохраняющую постоянный знак и отличную от нуля, то при J(x)>0 получится неравенство, равносильное данном, а при J(x)<0 равносильным данному является неравенство противоположного знака.

Неравенства с одной переменной. Пусть дано неравенство f(x) >g(x). Всякое значение переменной, при котором данное неравенство с одной переменной обращается в верное числовое неравенство, называется решением неравенства с одной переменной. Решить неравенство с переменной - значит найти все его решения или доказать, что их нет.

Два неравенства с одной переменной называются равносильными, если решения этих неравенств совпадают.

3. Графическое решение неравенств второй степени

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 3477
Бесплатно скачать Реферат: Неравенства