Реферат: Невласні інтеграли Поняття та різновиди невласних інтегралів

Перший інтеграл в правій частині цієї рівності збігається, бо

Другий інтеграл також збігається. Справді, якщо n — довільне натуральне число таке, що n > — 1, то

,

в чому можна пересвідчитись, обчислюючи останній інтеграл части­нами і враховуючи, що

Отже, інтеграл (92) при > 0 збігається і визначає деяку функцію, яку і називають гамма-функцією Г().

Обчислимо значення Г() при а N. Якщо = 1, то

(93)

Нехай n + 1 інтегруючи частинами, дістанемо

звідки

Г(n +1) = nГ(n) (94)

З рівностей (93) і (94) випливає, що nN:

Г(n +1) = n!

Таким чином, гамма-функція для цілих значень n N виражається через n!. Проте вона визначена і для нецілих додатних значень аргументу, тобто продовжує факторіальну функцію з дискретних значень аргументу на неперерв­ні. Гамма-функція не є елементарною функцією. Графік цієї функції зображено на рис. 7.35. Властивості гамма-функції досить добре ви­вчені і значення її протабульовані в багатьох довідниках, наприклад в [19].

Наводимо без доведення формулу Стірлінга для гамма-функції:

де > 0 і 0 < () < 1. Якщо в цій рівності покласти = nі помножити її на n, дістанемо

(95)

Бета- і гамма-функції пов'язані між собою співвідношенням

(96)

Приклади

1. Знайти Г

Згідно з формулою (96), при = = маємо

отже, Г=.

2. Обчислити інтеграл Ейлера — Пуассона

Враховуючи результат попереднього прикладу, дістанемо

3. Виразити інтеграл через бета-функцію наближено при = 3, = .

Маємо

Зокрема, при = 3 і = згідно з формулою (96) дістанемо

Завдання для самоконтролю

1. Які інтеграли називаються інтегралами, залежними від параметра?

2. Сформулювати теореми про неперервність, диференціювання та інтегрування Інтеграла, залежного від параметра.

1. 3. Дати означення гамма-функції Г().

3. Довести, що Г(n +1) = n!, n N.

4. Дати означення бета-функції В(,). Як пов'язані між собою бета- та гам­ма-функції?

5. Довести, що

Вказівка. Скористатись підстановкою sinx=.

К-во Просмотров: 165
Бесплатно скачать Реферат: Невласні інтеграли Поняття та різновиди невласних інтегралів