Реферат: Нормированное пространство. Банахово пространство

По определению сходимости по норме, значит, то есть.

Непрерывность нормы доказана.

Примеры нормированных пространств

1. Вещественная прямая R1 является нормированным пространством, если в качестве нормы взять модуль вещественного числа.

2. В действительном конечномерном пространстве Rn норму можно ввести нескольким способами. Наиболее широко известна Евклидова норма:

Другие возможные нормы:

В комплексном n-мерном пространстве норму можно ввести следующим образом:

3. В пространстве непрерывных на отрезка [a,b] функций C[a,b] норму можно задать формулой

4. Пусть М – пространство ограниченных числовых последовательностей

Х = (х1,х2,…,хп,…), положим:

||x||=sup|xn|.

Подпространства нормированного пространства

Рассматривая линейные пространства (без нормы), мы называли подпространством непустое множество L0 обладающее тем свойством, что если этому множеству принадлежат два элемента x и y пространства L, то любая линейная комбинация этих элементов также принадлежат этому множеству:

Подпространством нормированного пространства мы будем называть только замкнутое подпространства.

Определение: Линейным замыканием системы элементов {xn} или подпространством нормированного пространства, порождённым системой элементов {xn}, называется наименьшее замкнутое подпространство, содержащее все элементы данной системы.

Произвольную (то есть не обязательно замкнутую) совокупность элементов, содержащую вместе с x и y произвольную их линейную комбинацию ax + by будем называть линейным многообразием.

Система элементов нормированного пространства R называется полной, если её линейное замыкание есть само R.

Фактор-пространства нормированного пространства.

Пусть R — линейное нормированное пространство, а R' — некоторое его подпространство. Рассмотрим фактор пространство

З = R / R'.

Как известно, фактор-пространство является линейным пространством.

В этом пространстве можно ввести норму, положив для данного класса

Докажем, что все аксиомы нормы действительно выполняются.

Так как, то и Нулевым элементом з0 фактор-пространства R / R' является подпространство R'. Так как всякое подпространство должно содержать нулевой элемент, то

Обратно, если, то из непрерывности нормы следует, что в классе з можно указать последовательность элементов, сходящихся к нулевому элементу, но так как в подпространство линейного пространство замкнуто по определению, то замкнуты все классы смежности, а значит

з = R' = з0

Для всякого элемента и числа имеет место равенство

Возьмём слева и справа нижнюю грань по з:

С другой стороны, в силу того, что фактор-пространство является линейным пространством, имеет место равенство

К-во Просмотров: 271
Бесплатно скачать Реферат: Нормированное пространство. Банахово пространство