Реферат: Обработка результатов эксперимента

Найдём точечные оценки параметров a и σ нормального распределения методом моментов:

Следовательно, плотность вероятности предполагаемого нормального распределения имеет вид

Функция распределения предполагаемого нормального распределения имеет вид

Используя нормированную функцию Лапласа , функцию нормального распределения можно записать в виде

Проведем проверку гипотезы о нормальном распределении СВ Х (прочности бетона на сжатие) с помощью критерия согласия для этого интервалы наблюдаемых значений нормируют, т.е. выражают их в единицах среднего квадратического отклонения s : , причем наименьшее значение полагают равным , наибольшее . Далее вычисляют вероятности попадания СВ Х, имеющей нормальное распределение, с параметрами а = 22,94, σ = 1,65 в частичные интервалы (х i -1 ; х i ) по формуле

,

где

.

Например, вероятность того, что СВ Х (прочность бетона на сжатие) попадает в первый частичный интервал (;19) , равна

Аналогично

и т. д. После этого вычисляют теоретические (модельные) частоты нормального распределения и наблюдаемое значение критерия

Затем по таблицам квантилей распределения по уровню значимости q = 0,05 и числу степеней свободы ‚ (k — число интервалов; r — число параметров предполагаемого распределения СВ Х) находят критическое значение .

Если , то считают, что нет оснований для отклонения гипотезы о нормальном распределении прочности бетона на сжатие.

В противном случае, т. е. если , считается, что гипотеза нормального распределения прочности бетона на сжатие не согласуется с экспериментальными данными.

Вычисления, необходимые для определения наблюдаемого значения выборочной статистики приведем в таблице:

Интервалы наблюдаемых значений СВ Х, МПа

Частоты mi

Нормированные интервалы [ui , ui-1 ]

pi

npi

[18;19)

1

(-∞;-2,39)

0,008

2,00

1

0,05

[19;20)

9

[-2,39;-1,78)

0,029

7,25

3,06

0,42

[20;21)

20

[-1,78;-1,18)

0,081

20,25

0,06

0,00

[21;22)

41

К-во Просмотров: 861
Бесплатно скачать Реферат: Обработка результатов эксперимента