Реферат: Общая гидродинамика
Последний принцип даёт возможность утверждать, что в число уравнений равновесия жидкости (равновесия в Даламберовском смысле) во всяком случае входить условия равновесия соответствующего твёрдого тела. То есть, что условия равенства нулю главного вектора и главного момента приложенных сил являются необходимыми (но, конечно не достаточными) условиями равновесия жидкого объёма.
Итак, имеем условие равенства нулю главного вектора:
(6)
и равенство нулю главного момента:
(7)
Рассмотрим сначала уравнение (6). Превратим второй поверхностный интеграл в объёмный, для этого основываясь на формуле (3) перепишем его в виде:
и применим к каждому из входящих сюда интегралов вторую интегральную формулу, тогда получим:
(8)
Подставляя в (6) найдём:
(9)
откуда в силу произвольности выбранного объёма следует:
(10)
Это и есть искомое уравнение движения жидкости, выраженное через напряжения.
Обратимся к рассмотрению уравнения (7). Аналогично только что проделанному преобразованию перепишем поверхностный интеграл в виде:
и затем применим вторую интегральную формулу
тогда будем иметь, подставляя в (7):
(11)
По (10) второй сомножитель некоторого произведения, входящего под знак первого интеграла обращается в нуль, остаётся:
откуда в силу произвольности t следует:
(12)
Возьмём проекцию этого равенства на первую ось :
откуда следует:
Аналогичным путём, проектируя (12) на и , найдём, что вообще: