Реферат: Обучение общим методам решения задач
Кафедра методики
преподавания математики
Обучение общим методам решения задач
в школьном курсе математики.
Выполнил студент 144-й группы
математического факультета:
Рябов П.В.
Руководитель: старший преподаватель кафедры
методики преподавания математики Краснощёкова В.П.
Пермь 2001.
Содержание.
1.1 Введение……………………………………………………………….. 3
1.2 Составные части задачи и этапы её решения в школе……………… 5
2.1 Методы решения задач в школьном курсе
а) Аналитико-синтетический метод………………………………… 10
б) Метод сведения к ранее решенным……………………………… 13
в) Метод моделирования……………………………………………. 16
2.2 Заключение…………………………………………………………… 19
3.1 Список литературы………………………………………………….. 20
1.1 Введение.
Основная задача современного учителя математики не создание у учащихся механического применения полученных навыков, а умения их применения в нестандартных ситуациях. Поэтому в данной работе попытаемся проследить процесс обучения методам решения задач в школьном курсе математики, рассмотреть структуру обучения их решению в школьных учебниках, а также выделить преимущества и недостатки при обучении решению задач конкретным методом. Также необходимо выделить основные составные части задачи в школьном курсе, и на что, при обучении их решению, следует обратить внимание. Вообще чтобы научиться решать задачи надо их решать, причем решать различные задачи и по-разному (то есть разными способами), анализировать решения, сравнивать, находить преимущества и недостатки в каждом конкретном случае.
В том или ином виде в школе встречаются следующие методы решения задач:
- анализ и синтез
- метод сведения к ранее решённым
- метод мат.моделировавния
- метод математической индукции
- метод исчерпывающих проб
Но в данном случае я рассмотрю лишь первые три. Как мне кажется, они наиболее ярко выражены в школьном курсе. Анализ и синтез в принципе присутствуют в любой задаче в явном или неявном виде. Другие два метода очень активно используются как в математике, так и позже в алгебре и геометрии.
Целью же данной работы будет рассмотрение возможности обучения общим методам решения задач, в школе, а также сравнение методов для определения трудностей и преимуществ, связанных с их применением при обучении математике.
При обучении математике задачи имеют большое и многостороннее значение. Образовательное значение математических задач. Решая математическую задачу, человек познает много нового: знакомится с новой ситуацией, описанной в задаче, с применением математической теории к ее решению, познает новый метод решения или новые теоретические разделы математики, необходимые для решения задачи, и т. д. Иными словами, при решении математических задач человек приобретает математические знания, повышает свое математическое образование. При овладении методом решения некоторого класса задач у человека формируется умение решать такие задачи, а при достаточной тренировке - и навык, что тоже повышает уровень математического образования.
1.2 Составные части задачи и этапы её решения в школьном курсе.
При обучении решению задач необходимо научить учащихся разбираться в условии задач, в том, как они устроены, из каких составных частей они состоят, как и с чего начинается их решение.
Если прочитать условие любой задачи то можно выделить некий вопрос, другими словами требование, на который необходимо получить ответ, опираясь на условие. Если же внимательно изучить формулировку задачи то можно увидеть в ней определенные утверждения (то, что дано), они ещё называются условиями, и определенные требования (то, что нужно найти).
Далее рассмотрим составные части задачи и рекомендации к учащимся при их решении.
1) Вопросы и советы для усвоения содержания задачи (1-й этап-анализ условия). Нельзя приступать к решению задачи, не уяснив четко, в чем заключается задание, т. е. не установив, каковы данные и искомые или посылки и заключения. Первый совет учителя: не спешить начинать решать задачу. Этот совет не означает, что задачу надо решать как можно медленней. Он означает, что решению задачи должна предшествовать подготовка, заключающаяся в следующем:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--