Реферат: Определители матрицы и системы линейных алгебраических уравнений

Очевидно, что для любых матриц выполняются следующее свойство:

A×O = O; O×A = O,

где О – нулевая матрица.

2) Операция перемножения матриц ассоциативна, т.е. если определены произведения АВ и (АВ)С, то определены ВС и А(ВС), и выполняется равенство:

(АВ)С=А(ВС).

3) Операция умножения матриц дистрибутивна по отношению к сложению, т.е. если имеют смысл выражения А(В+С) и (А+В)С, то соответственно:

А(В + С) = АВ + АС

(А + В)С = АС + ВС.

4) Если произведение АВ определено, то для любого числа a верно соотношение:


a(AB) = (aA)B = A(aB).

5) Если определено произведение АВ, то определено произведение ВТ АТ и выполняется равенство:

(АВ)Т = ВТ АТ , где

индексом Т обозначается транспонированная матрица.

6) Заметим также, что для любых квадратных матриц det (AB) = detA×detB.

Понятие det (определитель, детерминант) будет рассмотрено ниже.

Определение. Матрицу В называют транспонированной матрицей А, а переход от А к В транспонированием, если элементы каждой строки матрицы А записать в том же порядке в столбцы матрицы В.

А = ; В = АТ =;

другими словами, bji = aij .

В качестве следствия из предыдущего свойства (5) можно записать, что:

(ABC)T = CT BT AT ,

при условии, что определено произведение матриц АВС.


Пример. Даны матрицы А = , В = , С = и число a = 2. Найти АТ В+aС.

AT = ; AT B = × = = ;

aC = ; АТ В+aС = + = .

Пример. Найти произведение матриц А = и В = .

АВ = × = .

ВА = × = 2×1 + 4×4 + 1×3 = 2 + 16 + 3 = 21.

Пример. Найти произведение матриц А=, В =

АВ = ×= = .


Определители.(детерминанты)

К-во Просмотров: 381
Бесплатно скачать Реферат: Определители матрицы и системы линейных алгебраических уравнений