Реферат: Определители матрицы и системы линейных алгебраических уравнений

A* = RgA* = 3.

Система несовместна.

Пример. Определить сов местность системы линейных уравнений.

А = ; = 2 + 12 = 14 ¹ 0; RgA = 2;

A* =

RgA* = 2.


Система совместна. Решения: x1 = 1; x2 =1/2.

Метод Гаусса

(Карл Фридрих Гаусс (1777-1855) немецкий математик)

В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.

Рассмотрим систему линейных уравнений:

Разделим обе части 1–го уравнения на a11 ¹ 0, затем:

1) умножим на а21 и вычтем из второго уравнения

2) умножим на а31 и вычтем из третьего уравнения

и т.д.

Получим:

, где d1j = a1j /a11 , j = 2, 3, …, n+1.

dij = aij – ai1 d1j i = 2, 3, …, n; j = 2, 3, …, n+1.


Далее повторяем эти же действия для второго уравнения системы, потом – для третьего и т.д.

Пример. Решить систему линейных уравнений методом Гаусса.

Составим расширенную матрицу системы.

А* =

Таким образом, исходная система может быть представлена в виде:

, откуда получаем: x3 = 2; x2 = 5; x1 = 1.

Пример. Решить систему методом Гаусса.

Составим расширенную матрицу системы.


К-во Просмотров: 382
Бесплатно скачать Реферат: Определители матрицы и системы линейных алгебраических уравнений