Реферат: Оптимизация считывания состояний джозефсоновского кубита

В первой главе приведены краткие теоретические сведения о джозефсоновском контакте и устройстве кубита на основе сверхпроводников. Во второй главе рассматриваются флуктуационные характеристики СВЧ гистерезисного СКВИДа и оптимизация параметров прибора для уменьшения влияния шума. Третья глава посвящена устройству и работе квантового интерферометра на постоянном токе. В четвертой главе приводится оптимизация процесса считывания информационного сигнала с кубита.

1. Джозефсоновский контакт и фазовый кубит

1.1 Теоретические сведения

Явление сверхпроводимости состоит в том, что при некоторой температуре, близкой к абсолютному нулю, электросопротивление в некоторых материалах исчезает. Эта температура называется критической температурой перехода в сверхпроводящее состояние.

Джозефсоновский контакт представляет собой систему, состоящую из двух сверхпроводников, разделенных тонкой диэлектрической прослойкой (рис.1). Носителями тока в сверхпроводнике являются так называемые куперовские пары [1].

Рис.1.

Движение куперовских пар, как и носителей тока в любых несверхпроводящих веществах, подчиняется квантовым законам. Так, в случае слабовзаимодействующих частиц в пренебрежении спиновыми эффектами, это движение можно описать обычным нестационарным уравнением Шредингера

(1)

где ψ - комплексная волновая функция данной частицы,

(2)

а Н - оператор Гамильтона. Согласно основам квантовой механики, модуль волновой функции пропорционален корню из плотности частиц. В стационарном состоянии, когда энергия Е частицы не меняется во времени, |ψ| можно считать постоянным во времени, а Н заменить на Е . В итоге уравнение (1) приобретает вид

(3)

так что специфика квантовомеханического описания фактически сводится к своеобразному закону изменения во времени фазы волновой функции частицы.

Куперовская пара в сверхпроводнике представляет собой связанное состояние двух электронов с противоположными спинами и импульсами и, следовательно, имеет нулевой суммарный спин. Такие пары подчиняются статистике Бозе-Эйнштейна и "конденсируются" на одном нижнем энергетическом уровне. Поэтому скорости движения фаз куперовских пар точно совпадают.

Вторая характерная особенность куперовских пар - их относительно большой размер, намного превышающий среднее расстояние между парами. В результате, волновые функции куперовских пар сильно перекрыты; пары "синхронизируются", т.е. не только скорости движения, но и их фазы в каждой точке становятся равными друг другу.

Таким образом, совокупность куперовских пар, или "конденсат", является когерентной, т.е. описывается единой волновой функцией ψ . В этом случае макроскопические величины, и в частности ток, могут явно зависеть от фазы χ единой волновой функции конденсата, так как эта зависимость не выпадает при суммировании по частицам.

Единственным существенным требованием к джозефсоновскому контакту является малость его длины d , т.е. расстояния между двумя ближайшими точками электродов (d см). Если это условие выполнено, то ток I , текущий через слабый контакт, содержит "сверхток" Is , который является функцией не от напряжения V , а от разности фаз

(4)

где - фазы волновых функций сверхпроводящего конденсата электродов.

Зависимость I s строго 2π-периодична и в простейшем случае имеет вид

(5)

где I c - некоторая константа (существенно зависящая от физической природы и размеров слабой связи), обычно называемая критическим током джозефсоновского перехода. Эта константа положительна, если считать ток положительным при его направлении от электрода 1 к электроду 2 (см. рис.1). Сама величина φ зависит от напряжения по закону

(6)

который содержит лишь фундаментальные физические постоянные ћ и е ( Дж/Гц, Кл).

Но в большинстве задач, связанных с динамикой джозефсоновского перехода, необходимо учитывать не только сверхток, но и другие компоненты тока через контакт. Рассмотрим их подробнее.

1. Нормальный ток IN . Если температура сверхпроводника Т не равна нулю, то энергия kT (Дж/К - постоянная Больцмана) теплового движения вызывает разрыв некоторого числа куперовских пар и появление в образце некоторого количества неспаренных электронов. В теории сверхпроводимости такие электроны называют квазичастицами, поскольку их свойства отличаются от свойств электронов нормального металла из-за присутствия конденсата.

Если напряжение на переходе равно нулю, то квазичастицы не дают вклада в ток. Однако, если фаза φ меняется во времени, и напряжение отлично от нуля, то в токе появляется квазичастичная компонента.

Если температура Т стремится снизу к критической температуре сверхпроводника Т c , то энергия связи куперовской пары стремится к нулю и становится существенно меньше тепловой энергии kT . При этом концентрация куперовских пар относительно мала, а концентрация квазичастиц (а также их свойства) такая же, как в нормальном металле. В этом случае зависимость нормального тока от напряжения при Т≈Т c близка к омической:

(7)

где GN =1/ RN - нормальная проводимость джозефсоновского перехода

К-во Просмотров: 328
Бесплатно скачать Реферат: Оптимизация считывания состояний джозефсоновского кубита