Реферат: Основні фізичні процеси в оптичних лініях зв’язку
1. Розповсюдження електромагнітних хвиль в оптичних волокнах
Модель розповсюдження світла крізь обмежену структуру подібну до оптичного волокна в термінах геометричних променів представляє тільки приблизний опис ефектів розповсюдження в них. Цей підхід добре діє поки характерний розмір поперечного перетину волокна як діаметр серцевини (2а, де а-радіус серцевини) великий у порівнянні з довжиною хвилі (l), що розповсюджується в волокні, і відносна різниця індексів серцевини і оболонки не надто мала. Фактично, як а, так і D можуть бути з'єднані разом з l, щоб створити комплексний параметр, що називається нормалiзованою частотою (V-числом) волокна, що визначається, як
. (1)
Якщо число V-волокна більше 10, результати геометричної оптики, основаної на променевих траєкторіях, приводять до точних рішень для багатьох ефектів розповсюдження в оптичних волокнах. Для V£10, геометрична оптика не в змозі пояснити ефекти розповсюдження в волокнах, що й вимагає здійснити електромагнiтний аналіз, оснований на хвильовій оптиці, щоб дослідити ефекти розповсюдження. Для одержання загальної основи, що могла б бути застосована для будь-якого волоконного хвильоводу з довільним числом V, починають з рівняння Максвела і відтворюють так звані векторні хвильові рівняння [5, 6], що задовольняють електричному () та магнiтному () полю векторів світлової хвилі:
, (2)
, (3)
де e=e0 n2 , e0 є значенням e для вільного простору, n - показник заломлення, ε - діелектрична проникність волокна і m0 - магнитна проникність для вільного простору, що по значенню така як і в волокні, при припущенні, що волокно не є немагнетиком. Перша форма розподілу індексу заломлення, запропонована для оптичного волокна, являє собою профiль, в якому поза серцевиною з показником заломлення n1 (діаметр 2а) знаходиться однорідна оболонка з показником заломлення n2 ; так, що можна алгебраїчно представити профіль показника заломлення (ППЗ) як:
. (4)
Волокна з профілем, аналогічним (4) відомі як волокна зі східчастим ППЗ. Для такого однорідного середовища член Ve дорівнюватиметься 0 як в серцевині, так і в оболонці, і в кожній з цих областей кожна декартовська компонента електричного та магнiтного поля буде задовольняти рівнянню
. (5)
Воно відоме як скалярне хвильове рівняння, де Y представляє будь-яку з декартовських компонент полів та . Оскільки n є незалежним від z, рішення рівняння може, взагалі, бути записано так:
Y(r,j,z,t)=y(r,j)exp( i [wt-bz]), (6)
де напрямок розповсюдження - уздовж z, і b - поширена стала розповсюдження. Рівняння (6) допускає два вигляду рішень в (5) - перше, в якому поле експоненціальне зменшується з r, при якому r>а і осцилює всередині серцевини (r<a): друге рішення допускає осцилюючі хвилі при всіх величинах r. Ми незабаром побачимо, що перший тип рішення допускає дискретні значення b, відомий як направлені моди волокна, другий – відомий як радіаційні моди, що характеризуються континуумом b. Формально, направлена мода визначається як певний розподіл поля, що поширюється в хвильоводі з певним станом поляризації і групової швидкості vг =1/(db/dw) без яких-небудь змін в періоді цього розподілення. Будучи залежним від своєї геометрії і фізичних властивостей, волокно може підтримувати цілий ряд мод або тільки одну моду - в першому випадку його можна назвати багатомодовим волокном, в другому - одномодовим або мономодовим волокном. Фактично, довільно падаюче поле на вхідному кінці волокна може бути завжди записано як
. (7)
В (7) – представляє суму дискретних направлених мод, тоді як інтеграл - безрозмірна сукупність радіаційних мод. Реальні значення bP будуть визначатися граничними умовами.
Ми можемо згадати, що в якісних волокнах телекомунікації відносна різниця показника заломлення оболонка-серцевина звичайно ніколи не перевищує 1-2%. Такі волокна що мають D<<1 відомі як напрямні волокна. Побічним продуктом цієї умови (яка має практичний зміст) - те, що моди в таких волокнах є (що можна продемонструвати) майже лінійно поляризованими і мають поперечну компоненту поля Y, що лежить майже повністю вздовж y або x, з порівняно дуже малою поздовжньою компонентою. Далі, так як різниця індексу заломлення є малою, можна припустити, що Y і ¶Y/¶r є безперервними поперечно r=a.
Так як для східчастого волокна, і залежить від r і лише від нього, тобто є цилiндрично симетричним, (5) записують в цилiндричнiй системі координат
, (8)
де – хвильове число вільного простору.
Застосовуючи засіб розділення перемінних, тобто записуючи
, (9)
Рівняння (9) може бути вирішене окремо для своєї радіальної та азимутальної компонент. Азимутальна компонента може бути представлена
F(j)~exp(± i l j), (10)
де l=0, 1, 2, 3... Радіальна частина Y задовольнить таким рівнянням
, r<a, (11)
, r³a. (12)
Рівняння (11), (12) - стандартна форма рівнянь Бесселя, які допускають чотири різноманітних типи циліндричних функцій: J1 (x), Y1 (x),та K1 (x), I1 (x) відповідно. Проте для полів мод кінцевих та обмежувальних серцевин і експоненціальне загасаючих в оболонці, можна обрати функцію Бесселя J1 (x), як поширення (11) всередині серцевини і модифіковану функцію Бесселя K1 (x), як рішення (12) всередині оболонки. Відповідно, рішення (11) і (12) можуть бути записані як:
, (13)
де і такі, що
--> ЧИТАТЬ ПОЛНОСТЬЮ <--