Реферат: Основні задачі математичної фізики
Найпростішим з них є рівняння теплопровідності, або рівнянням Фур’є:
До рівняннь еліптичного типу приводить вивчення різних стаціонарних процесів (електростатика, магнітостатика, потенціальний рух рідини, що не стискується, тощо). Найпростішими з них є рівняння DU=0 (Лапласа); DU=C (Пуассона), а також рівняння, яке розглядав Ейлер: DU+kU=0, і полігармонійні рівняння.
В кожному з цих типів рівняннь шукана функція U залежить від двох змінних. Розглядаються також відповідні рівняння і для функції з більшими числом змінних. Так хвильове рівняння з трьома незалежними змінними має вид:
рівняння теплопровідності з трьома незалежними змінними має вид:
рівняння Лапласа з трьома незалежними змінними має вид:
Тема: Рівняння коливань струни.
В математичній фізиці під струною розуміють гнучку ніть. Напруги, що з’явились в струні в любий момент часу, напрямлені по дотичній до її профелів. Нехай струна довжини l в початковий момент напрямлена по відрізку осі 0Х від 0 до l. Припустимо, що кінці струни закріплені в точках Х=0 і Х=l. Якщо струну відхилити від її початкового положення, а потім предоставить самій собі або, не відхиляючи струни, придати в початковий момент її точкам деяку швидкість, або відхилити струну і придати її точкам деяку швидкість, то точки струни будуть виконувати рух – говорять, що струна починає коливатись. Задача заключається у ввизначенні форми струни в любий момент часу і у визначенні закону руху кожної точки струни в залежності відчасу.
Розглянемо малі відхилення точок струни від початкового положення. В силу цього можна припускати , що рух точок струни проходить перпендикулярно осі 0Х і в одній площі. При цьому препущенні процес коливань струни описується однією функцією u(x,t), яка дає величину переміщення точки струни з абсцисой х в момент t (рис.1).
Так як ми розглядаємо малі відхилення струни в площі (x,u), то будемо припускати, що довжина елемента струни ¾М1 М2 рівна її проекції на вісь 0Х, ¾М1 М2 =х2 -х1 . Також будем припускати, що натяг в усіх точках струни однаковий; позначимо його як Т.
?????????? ??????? ?????? ??' (??? 2).
На кінцях цього елемента, по дотичним до струни, діють сили Т. нехай дотичні створять з віссю 0Х кути j та j+Dj . тоді проекція на вісь 0u сил, діючих на елемент ММ', буде рівна Тsin(j+Dj)-Tsinj. Так як кут j малий, то можна покласти tgj=sinj, і ми отримаємо :
(тут ми примінили теорему Лагранжа до виразу, що стоїть у квадратних душках).
Щоб получити рівняння руху, потрібно зовнішні сили прирівняти силі інерції. Нехай r - лінійна щільність струни. Тоді маса елемента струни буде rDх. Прискорення елемента дорівнює . Отже, по принципу Даламбера будем мати:
Скорочуючи на Dх і позначаючи , получаємо рівняння руху . (1)
Це і є хвильове рівняння – рівняння коливань струни. Для повного визначення руху струни одного рівняння (1) недостатньо. Шукана функція u(x,t) повинна ще задовільнятись граничним умовам , вказуючим, що робиться на кінцях струни (х=0 і х=1), та початковим умовам , описуючим стан струни в початковий момент (t=0). Суцільність граничних та початкових умов називається краєвими умовами .
Нехай, наприклад, як ми припускали, кінці струни при х=0 і х=1 нерухомі. Тоді при довільному t мають виконуватись рівності:
u(0,t)=0,
u(l,t)=0.
Ці рівності є граничними умовами для нашої задачі.
В початковий момент t=0 струна має визначену форму, яку ми їй надали. Нехай ця форма визначається функцією f(x). Таким чином, має бути
. (2)
Далі, в початковий момент має бути задана швидкість в кожній точці струни, яка визначається функцією j(х).Таким чином, має бути
. (3)
Умови (2) і (3) являються початковими умовами .
Тема: Розв ’ язок задачі Коші методом Даламбера.
Розглянемо ще один метод рішення хвильового рівняння – метод Даламбера.
Візьмем випадок, коли граничні умови нас не цікавлять або коли їх можна не враховувати. В цих випадках задача ставиться так:
Знайти рішення хвильового рівняння
Utt -a2 uxx =0 (t=y, a11 =-a2 , a12 =0, a22 =1),
Задовільняюче початковим умовам
U(x,0)=j(x); ut (x,0)=y(x)
де j(х) і y(x) – задані у функції.
Зведем хвильове рівняння до канонічного виду, що містить змішану похідну. Тут характеристичне рівняння
A11 dt2 -2a12 dxdt+a22 dx2 =0
Прийме вид -a2 dt2 +dx2 =0,
або dx2 -a2 dt2 =0.
Воно розпадається на два рівняння:
dx-adt=0 і dx+adt=0
інтеграли яких будуть x-at=C1 , x+at=C2