Реферат: Основные характеристики пространственной структуры излучения
Учитывая это, фазочастотная характеристика свободного пространства может приближенно рассматриваться в различных условиях дифракции:
1) в условиях приближения геометрической оптики изменением ФЧХ свободного пространства в диапазоне углов дифракции можно пренебречь
Рис. 3. Фазочастотная характеристика свободного пространства.
Рис. 4. Диаграмма направленности антенны при равномерном АФР.
,
если второе (отброшенное) слагаемое разложения в ряд Маклорена много меньше радиан
,
что выполняется в области глубокой ближней зоны
.
2) в условиях дифракции Френеля фазочастотную характеристику свободного пространства в диапазоне углов дифракции можно аппроксимировать параболой
,
если третье (отброшенное) слагаемое разложения в ряд Маклорена много меньше радиан
,
что выполняется на расстояниях
т.е. практически в области ближней зоны
.
3) в условиях дифракции Фраунгофера, когда изменение фазочастотной характеристики свободного пространства в диапазоне углов рефракции больше радиан
т.е. практически в области дальней зоны
.
При этом решение дифракционной задачи упрощается в большей мере, чем даже в частных случаях дифракции Френеля или приближения геометрической оптики. Действительно, поле в дальней зоне, используя полярную систему координат
,
,
,
можно представить в следующем виде:
.
Учитывая ограниченную область изменения пространственной частоты , относительно малые размеры пространства сигнала , относительно небольшой диапазон изменения углов дифракции , можно вычислить интеграл путем ряда уточнений, преобразований переменной интегрирования упрощений: